scholarly journals Insulin sensitisation affects lipoprotein lipase transport in type 2 diabetes: role of adipose tissue and skeletal muscle in response to rosiglitazone

Diabetologia ◽  
2006 ◽  
Vol 49 (10) ◽  
pp. 2412-2418 ◽  
Author(s):  
G. D. Tan ◽  
G. Olivecrona ◽  
H. Vidal ◽  
K. N. Frayn ◽  
F. Karpe
Environments ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 35
Author(s):  
Fozia Ahmed ◽  
Maria João Pereira ◽  
Céline Aguer

Bisphenol A (BPA) and bisphenol S (BPS) are environmental contaminants that have been associated with the development of insulin resistance and type 2 diabetes (T2D). Two organs that are often implicated in the development of insulin resistance are the skeletal muscle and the adipose tissue, however, seldom studies have investigated the effects of bisphenols on their metabolism. In this review we discuss metabolic perturbations that occur in both the skeletal muscle and adipose tissue affected with insulin resistance, and how exposure to BPA or BPS has been linked to these changes. Furthermore, we highlight the possible effects of BPA on the cross-talk between the skeletal muscle and adipose tissue.


2005 ◽  
Vol 34 (2) ◽  
pp. 299-315 ◽  
Author(s):  
Young Ho Suh ◽  
Younyoung Kim ◽  
Jeong Hyun Bang ◽  
Kyoung Suk Choi ◽  
June Woo Lee ◽  
...  

Insulin resistance occurs early in the disease process, preceding the development of type 2 diabetes. Therefore, the identification of molecules that contribute to insulin resistance and leading up to type 2 diabetes is important to elucidate the molecular pathogenesis of the disease. To this end, we characterized gene expression profiles from insulin-sensitive tissues, including adipose tissue, skeletal muscle, and liver tissue of Zucker diabetic fatty (ZDF) rats, a well characterized type 2 diabetes animal model. Gene expression profiles from ZDF rats at 6 weeks (pre-diabetes), 12 weeks (diabetes), and 20 weeks (late-stage diabetes) were compared with age- and sex-matched Zucker lean control (ZLC) rats using 5000 cDNA chips. Differentially regulated genes demonstrating > 1.3-fold change at age were identified and categorized through hierarchical clustering analysis. Our results showed that while expression of lipolytic genes was elevated in adipose tissue of diabetic ZDF rats at 12 weeks of age, expression of lipogenic genes was decreased in liver but increased in skeletal muscle of 12 week old diabetic ZDF rats. These results suggest that impairment of hepatic lipogenesis accompanied with the reduced lipogenesis of adipose tissue may contribute to development of diabetes in ZDF rats by increasing lipogenesis in skeletal muscle. Moreover, expression of antioxidant defense genes was decreased in the liver of 12-week old diabetic ZDF rats as well as in the adipose tissue of ZDF rats both at 6 and 12 weeks of age. Cytochrome P450 (CYP) genes were also significantly reduced in 12 week old diabetic liver of ZDF rats. Genes involved in glucose utilization were downregulated in skeletal muscle of diabetic ZDF rats, and the hepatic gluconeogenic gene was upregulated in diabetic ZDF rats. Genes commonly expressed in all three tissue types were also observed. These profilings might provide better fundamental understanding of insulin resistance and development of type 2 diabetes.


2009 ◽  
Vol 55 (5) ◽  
pp. 43-48 ◽  
Author(s):  
V Shvarts

This review deals with the role of adipose tissue inflammation (ATI) in the development of type 2 diabetes mellitus (DM2). ATI is regarded as a link between obesity and DM2. The review illustrates the involvement of main adipokines in pathogenesis of DM2 and provides a detailed description of such factors as impaired adiponectin and stimulation of cytokine production responsible for metabolic disorders, activation of lipolysis, in adipocytes, increased fatty acid and triglyceride levels, suppression of insulin activity at the receptor and intracellular levels. Adipokines, in the first place cytokines, act on the insulin signal pathway and affect the intracellular inflammatory kinase cascade. At the intercellular level, ATI stimulates JNK and IKK-beta/kB responsible for the development of insulin resistance via such mechanisms as activation of cytokine secretion in the adipose tissue, oxidative stress, and induction of endoplasmic reticulum enzymes. The key role of JNK and IKK-beta/kB in the inhibition of the insulin signal pathway is mediated through inactivation of insulin receptor substrate 1. Also, it is shown that ATI modulates B-cell function and promotes progressive reduction of insulin secretion.


Biomolecules ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 601
Author(s):  
Aditya Saxena ◽  
Nitin Wahi ◽  
Anshul Kumar ◽  
Sandeep Kumar Mathur

The pathogenic mechanisms causing type 2 diabetes (T2D) are still poorly understood; a greater awareness of its causation can lead to the development of newer and better antidiabetic drugs. In this study, we used a network-based approach to assess the cellular processes associated with protein–protein interaction subnetworks of glycemic traits—HOMA-β and HOMA-IR. Their subnetworks were further analyzed in terms of their overlap with the differentially expressed genes (DEGs) in pancreatic, muscle, and adipose tissue in diabetics. We found several DEGs in these tissues showing an overlap with the HOMA-β subnetwork, suggesting a role of these tissues in β-cell failure. Many genes in the HOMA-IR subnetwork too showed an overlap with the HOMA-β subnetwork. For understanding the functional theme of these subnetworks, a pathway-to-pathway complementary network analysis was done, which identified various adipose biology-related pathways, containing genes involved in both insulin secretion and action. In conclusion, network analysis of genes showing an association between T2D and its intermediate phenotypic traits suggests their potential role in beta cell failure. These genes enriched the adipo-centric pathways and were expressed in both pancreatic and adipose tissue and, therefore, might be one of the potential targets for future antidiabetic treatment.


2019 ◽  
Vol 8 (6) ◽  
pp. 854 ◽  
Author(s):  
Min-Woo Lee ◽  
Mihye Lee ◽  
Kyoung-Jin Oh

Obesity is one of the main risk factors for type 2 diabetes mellitus (T2DM). It is closely related to metabolic disturbances in the adipose tissue that primarily functions as a fat reservoir. For this reason, adipose tissue is considered as the primary site for initiation and aggravation of obesity and T2DM. As a key endocrine organ, the adipose tissue communicates with other organs, such as the brain, liver, muscle, and pancreas, for the maintenance of energy homeostasis. Two different types of adipose tissues—the white adipose tissue (WAT) and brown adipose tissue (BAT)—secrete bioactive peptides and proteins, known as “adipokines” and “batokines,” respectively. Some of them have beneficial anti-inflammatory effects, while others have harmful inflammatory effects. Recently, “exosomal microRNAs (miRNAs)” were identified as novel adipokines, as adipose tissue-derived exosomal miRNAs can affect other organs. In the present review, we discuss the role of adipose-derived secretory factors—adipokines, batokines, and exosomal miRNA—in obesity and T2DM. It will provide new insights into the pathophysiological mechanisms involved in disturbances of adipose-derived factors and will support the development of adipose-derived factors as potential therapeutic targets for obesity and T2DM.


2017 ◽  
Vol 176 (2) ◽  
pp. R67-R78 ◽  
Author(s):  
Charlotte Brøns ◽  
Louise Groth Grunnet

Dysfunctional adipose tissue is associated with an increased risk of developing type 2 diabetes (T2D). One characteristic of a dysfunctional adipose tissue is the reduced expandability of the subcutaneous adipose tissue leading to ectopic storage of fat in organs and/or tissues involved in the pathogenesis of T2D that can cause lipotoxicity. Accumulation of lipids in the skeletal muscle is associated with insulin resistance, but the majority of previous studies do not prove any causality. Most studies agree that it is not the intramuscular lipids per se that causes insulin resistance, but rather lipid intermediates such as diacylglycerols, fatty acyl-CoAs and ceramides and that it is the localization, composition and turnover of these intermediates that play an important role in the development of insulin resistance and T2D. Adipose tissue is a more active tissue than previously thought, and future research should thus aim at examining the exact role of lipid composition, cellular localization and the dynamics of lipid turnover on the development of insulin resistance. In addition, ectopic storage of fat has differential impact on various organs in different phenotypes at risk of developing T2D; thus, understanding how adipogenesis is regulated, the interference with metabolic outcomes and what determines the capacity of adipose tissue expandability in distinct population groups is necessary. This study is a review of the current literature on the adipose tissue expandability hypothesis and how the following ectopic lipid accumulation as a consequence of a limited adipose tissue expandability may be associated with insulin resistance in muscle and liver.


2020 ◽  
Vol 4 (s1) ◽  
pp. 9-9
Author(s):  
Darcy Kahn ◽  
Simona Zarini ◽  
Emily Macias ◽  
Amanda Garfield ◽  
Kathleen Harrison ◽  
...  

OBJECTIVES/GOALS: Intermuscular adipose tissue (IMAT) has been associated with insulin resistance and type 2 diabetes, yet mechanistic studies addressing the functional role of IMAT are lacking. The aim of this work was to identify novel mechanisms by which IMAT may directly impact skeletal muscle metabolism. METHODS/STUDY POPULATION: We quantified the secretome of IMAT, subcutaneous adipose tissue (SAT), and visceral adipose tissue (VAT) to determine if there are differences between depots in the secretion of cytokines, eicosanoids, FFAs and proteins that influence metabolic function. SAT and VAT biopsies from patients undergoing laparoscopic bariatric surgery and IMAT extracted from vastus lateralis biopsies of individuals with Obesity were cultured for 48 hours in DMEM, and the conditioned media was analyzed using nanoflow HPLC-MS, multiplex ELISAs and LC/MS/MS for proteins, cytokines and eicosanoids/FFA, respectively. RESULTS/ANTICIPATED RESULTS: IMAT secretion of various extracellular matrix proteins (fibrinogen-β, collagenV1a3, fibronectin) was significantly different than VAT and SAT. Pro-inflammatory cytokine secretion of IFNg, TNFa, IL-8 and IL-13 from IMAT was higher than VAT and significantly higher than SAT (p < 0.05). IMAT secretes significantly more pro-inflammatory eicosanoids TXB2 and PGE2 than VAT (p = 0.02, 0.05) and SAT (p = 0.01, 0.04). IMAT and VAT have significantly greater basal lipolysis assessed by FFA release rates compared to SAT (p = 0.01, 0.04). DISCUSSION/SIGNIFICANCE OF IMPACT: These data begin to characterize the disparate secretory properties of SAT, VAT and IMAT and suggest a metabolically adverse secretome of IMAT, that due to its proximity to skeletal muscle may play an important functional role in the pathogenesis of insulin resistance and type 2 diabetes.


2020 ◽  
Vol 21 (16) ◽  
pp. 5738
Author(s):  
Xiong Weng ◽  
De Lin ◽  
Jeffrey T. J. Huang ◽  
Roland H. Stimson ◽  
David H. Wasserman ◽  
...  

Aberrant extracellular matrix (ECM) remodelling in muscle, liver and adipose tissue is a key characteristic of obesity and insulin resistance. Despite its emerging importance, the effective ECM targets remain largely undefined due to limitations of current approaches. Here, we developed a novel ECM-specific mass spectrometry-based proteomics technique to characterise the global view of the ECM changes in the skeletal muscle and liver of mice after high fat (HF) diet feeding. We identified distinct signatures of HF-induced protein changes between skeletal muscle and liver where the ECM remodelling was more prominent in the muscle than liver. In particular, most muscle collagen isoforms were increased by HF diet feeding whereas the liver collagens were differentially but moderately affected highlighting a different role of the ECM remodelling in different tissues of obesity. Moreover, we identified a novel association between collagen 24α1 and insulin resistance in the skeletal muscle. Using quantitative gene expression analysis, we extended this association to the white adipose tissue. Importantly, collagen 24α1 mRNA was increased in the visceral adipose tissue, but not the subcutaneous adipose tissue of obese diabetic subjects compared to lean controls, implying a potential pathogenic role of collagen 24α1 in obesity and type 2 diabetes.


2008 ◽  
Vol 93 (11) ◽  
pp. 4486-4493 ◽  
Author(s):  
Anders Rinnov Nielsen ◽  
Pernille Hojman ◽  
Christian Erikstrup ◽  
Christian Philip Fischer ◽  
Peter Plomgaard ◽  
...  

Objective: IL-15 decreases lipid deposition in preadipocytes and decreases the mass of white adipose tissue in rats, indicating that IL-15 may take part in regulating this tissue. IL-15 is expressed in human skeletal muscle and skeletal muscle may be a source of plasma IL-15 and in this way regulate adipose tissue mass. Design: The relation between skeletal muscle IL-15 mRNA expression, plasma IL-15, and adipose tissue mass was studied in 199 humans divided into four groups on the basis of obesity and type 2 diabetes. Furthermore, using a DNA electrotransfer model, we assessed the effect of IL-15 overexpression in skeletal muscle of mice. Results: In humans, multiple regression analysis showed a negative association between plasma IL-15 and total fat mass (P &lt; 0.05), trunk fat mass (P &lt; 0.01), and percent fat mass (P &lt; 0.05), independent of type 2 diabetes. Negative associations were also found between muscle IL-15 mRNA and obesity parameters. IL-15 overexpression in skeletal muscle of mice reduced trunk fat mass but not sc fat mass. Conclusions: Our results indicate that IL-15 may be a regulator of trunk fat mass.


Endocrinology ◽  
2009 ◽  
Vol 150 (2) ◽  
pp. 1069-1069
Author(s):  
Michael Boschmann ◽  
Stefan Engeli ◽  
Kerstin Dobberstein ◽  
Petra Budziarek ◽  
Anke Strauss ◽  
...  

Abstract Context: Dipeptidyl-peptidase-IV (DPP-4) inhibition increases endogenous GLP-1 activity resulting in improved glycemic control in patients with type 2 diabetes mellitus. The metabolic response may be explained in part by extra-pancreatic mechanisms. Objective: We tested the hypothesis that DPP-4 inhibition with vildagliptin elicits changes in adipose tissue and skeletal muscle metabolism. Design: Randomized, double blind, crossover study. Setting: Academic clinical research center. Patients: Twenty patients with type 2 diabetes, body mass index between 28 and 40 kg/m2. Intervention: Seven days treatment with the selective DPP-4 inhibitor vildagliptin or placebo. Standardized test meal on day seven. Main Outcome Measures: Venous DPP-4 activity, catecholamines, free fatty acids, glycerol, glucose, (pro)insulin; dialysate glucose, lactate, pyruvate, glycerol. Results: Fasting and postprandial venous insulin, glucose, glycerol, triglycerides and free fatty acid concentrations were not different with vildagliptin and with placebo. Vildagliptin augmented the postprandial increase in plasma norepinephrine. Furthermore, vildagliptine increased dialysate glycerol and lactate concentrations in adipose tissue while suppressing dialysate lactate and pyruvate concentration in skeletal muscle. The respiratory quotient increased with meal ingestion but was consistently lower with vildagliptin. Conclusions: Our study is the first to suggest that DPP-4 inhibition augments postprandial lipid mobilization and oxidation. The response may be explained by sympathetic activation rather than a direct effect on metabolic status.


Sign in / Sign up

Export Citation Format

Share Document