scholarly journals Toll-like receptor 2-deficient mice are protected from insulin resistance and beta cell dysfunction induced by a high-fat diet

Diabetologia ◽  
2010 ◽  
Vol 53 (8) ◽  
pp. 1795-1806 ◽  
Author(s):  
J. A. Ehses ◽  
D. T. Meier ◽  
S. Wueest ◽  
J. Rytka ◽  
S. Boller ◽  
...  
2017 ◽  
Vol 68 (7) ◽  
pp. 1622-1627 ◽  
Author(s):  
Diana Simona Stefan ◽  
Andrada Mihai ◽  
Daiana Bajko ◽  
Daniela Lixandru ◽  
Laura Petcu ◽  
...  

Metabolic surgery is the most efficacious method for the treatment of morbid obesity and was recently included among the antidiabetes treatments recommended in obese type 2 diabetes (T2D) patients. The aim of this study was to compare in a randomized controlled trial the effect of sleeve gastrectomy (SG) to that of intensive lifestyle intervention plus pharmacologic treatment on some markers of insulin resistance and beta cell function as well as some appetite controlling hormones in a group of male obese T2D subjects. The study groups comprised 20 subjects for SG and 21 control subjects. Fasting blood glucose, insulin, proinsulin, adiponectin, leptin, ghrelin, HOMA-IR, HOMA-%B, proinsulin-to-insulin ratio and proinsulin-to-adiponectin ratio were evaluated at baseline and after one year follow-up. Overall, patients in the SG group lost 78.98% of excess weight loss (%EWL) in comparison with 9.45% in the control group. This was accompanied by a significant improvement of insulin resistance markers, including increase of adiponectin and decrease of HOMA-IR, while no changes were recorded in the control group. Weight loss was also associated with a significant improvement of proinsulin-to-insulin and proinsulin-to-adiponectin ratio, both surrogate markers of beta cell dysfunction. These also improved in the control group, but were only marginally significant. Our findings suggest that improved insulin resistance and decreased beta cell dysfunction after sleeve gastrectomy might explain diabetes remission associated with metabolic surgery.


2012 ◽  
Vol 302 (6) ◽  
pp. E654-E665 ◽  
Author(s):  
Banumathi K. Cole ◽  
Norine S. Kuhn ◽  
Shamina M. Green-Mitchell ◽  
Kendall A. Leone ◽  
Rebekah M. Raab ◽  
...  

Central obesity is associated with chronic inflammation, insulin resistance, β-cell dysfunction, and endoplasmic reticulum (ER) stress. The 12/15-lipoxygenase enzyme (12/15-LO) promotes inflammation and insulin resistance in adipose and peripheral tissues. Given that obesity is associated with ER stress and 12/15-LO is expressed in adipose tissue, we determined whether 12/15-LO could mediate ER stress signals. Addition of 12/15-LO lipid products 12(S)-HETE and 12(S)-HPETE to differentiated 3T3-L1 adipocytes induced expression and activation of ER stress markers, including BiP, XBP-1, p-PERK, and p-IRE1α. The ER stress inducer, tunicamycin, upregulated ER stress markers in adipocytes with concomitant 12/15-LO activation. Addition of a 12/15-LO inhibitor, CDC, to tunicamycin-treated adipocytes attenuated the ER stress response. Furthermore, 12/15-LO-deficient adipocytes exhibited significantly decreased tunicamycin-induced ER stress. 12/15-LO action involves upregulation of interleukin-12 (IL-12) expression. Tunicamycin significantly upregulated IL-12p40 expression in adipocytes, and IL-12 addition increased ER stress gene expression; conversely, LSF, an IL-12 signaling inhibitor, and an IL-12p40-neutralizing antibody attenuated tunicamycin-induced ER stress. Isolated adipocytes and liver from 12/15-LO-deficient mice fed a high-fat diet revealed a decrease in spliced XBP-1 expression compared with wild-type C57BL/6 mice on a high-fat diet. Furthermore, pancreatic islets from 12/15-LO-deficient mice showed reduced high-fat diet-induced ER stress genes compared with wild-type mice. These data suggest that 12/15-LO activity participates in ER stress in adipocytes, pancreatic islets, and liver. Therefore, reduction of 12/15-LO activity or expression could provide a new therapeutic target to reduce ER stress and downstream inflammation linked to obesity.


Endocrinology ◽  
2009 ◽  
Vol 150 (5) ◽  
pp. 2109-2117 ◽  
Author(s):  
Elodie Riant ◽  
Aurélie Waget ◽  
Haude Cogo ◽  
Jean-François Arnal ◽  
Rémy Burcelin ◽  
...  

Although corroborating data indicate that estrogens influence glucose metabolism through the activation of the estrogen receptor α (ERα), it has not been established whether this pathway could represent an effective therapeutic target to fight against metabolic disturbances induced by a high-fat diet (HFD). To this end, we first evaluated the influence of chronic 17β-estradiol (E2) administration in wild-type ovariectomized mice submitted to either a normal chow diet or a HFD. Whereas only a modest effect was observed in normal chow diet-fed mice, E2 administration exerted a protective effect against HFD-induced glucose intolerance, and this beneficial action was abolished in ERα-deficient mice. Furthermore, E2 treatment reduced HFD-induced insulin resistance by 50% during hyperinsulinemic euglycemic clamp studies and improved insulin signaling (Akt phosphorylation) in insulin-stimulated skeletal muscles. Unexpectedly, we found that E2 treatment enhanced cytokine (IL-6, TNF-α) and plasminogen activator inhibitor-1 mRNA expression induced by HFD in the liver and visceral adipose tissue. Interestingly, although the proinflammatory effect of E2 was abolished in visceral adipose tissue from chimeric mice grafted with bone marrow cells from ERα-deficient mice, the beneficial effect of the hormone on glucose tolerance was not altered, suggesting that the metabolic and inflammatory effects of estrogens can be dissociated. Eventually comparison of sham-operated with ovariectomized HFD-fed mice demonstrated that endogenous estrogens levels are sufficient to exert a full protective effect against insulin resistance and glucose intolerance. In conclusion, the regulation of the ERα pathway could represent an effective strategy to reduce the impact of high-fat diet-induced type 2 diabetes.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Ellen Jackson ◽  
Elizabeth Rendina-Ruedy ◽  
Matt Priest ◽  
Brenda Smith ◽  
Veronique Lacombe

Diabetes mellitus is an epidemic disease characterized by alterations in glucose transport, which is tightly regulated by a family of specialized proteins called the glucose transporters (GLUTs). Although diabetic cardiomyopathy is a common complication in diabetic patients, its pathogenesis is still not well understood. Toll-like receptor (TLR) 4, which plays a central role in pathogen recognition by the innate immune system, may also play a critical role in linking inflammation and metabolic disease. We hypothesized that TLR4 activation triggers cardiac insulin resistance. We used mice with a loss-of function mutation in TLR4 (C3H/HeJ) and age-matched wild-type (WT, C57BL/6N) mice (n=8/group) to investigate how feeding a high-fat diet (HFD, 60% kcal from fat) for 16 weeks affected whole-body and cardiac glucose metabolism. After 16 weeks, WT mice fed a HFD were obese and developed hyperglycemia and insulin resistance compared to WT mice on a control diet (10% kcal from fat). The C3H/HeJ mice were partially protected against HFD-induced obesity and insulin resistance. In the heart, WT mice fed a HFD had a 30% decrease (P<0.05) in GLUT4 protein content as measured by Western Blot of cardiac crude membrane protein extracts. In contrast, the loss-of-function point mutation in TLR4 partially rescued cardiac GLUT4 content in the face of a HFD. Interestingly, there was a 40% increase (P<0.05) in the novel GLUT isoform, GLUT8, in the heart when mice of either genotype were fed a HFD. Additionally, GLUT4 protein content was negatively (P<0.05) correlated with GLUT8 content in the myocardium, suggesting that GLUT8 may act as a compensatory mechanism in the face of HFD-induced GLUT4 downregulation. Phosphorylated Akt, a key protein of the insulin signaling pathway, was positively (P<0.05) correlated with GLUT4 content, while the basal/inactive form was negatively correlated. In conclusion, these data suggest that activation of TLR4 activation during diabetes and obesity alters glucose transport by an Akt mechanism, and as such is a pathogenic factor during peripheral and cardiac insulin resistance. Overall, TLR4 appears to be a key modulator in the cross-talk between inflammatory and metabolic pathways, as well as a potential therapeutic target for diabetes.


2012 ◽  
Vol 36 (4) ◽  
pp. 275 ◽  
Author(s):  
Hannah Seok ◽  
Ji Young Lee ◽  
Eun Mi Park ◽  
Se Eun Park ◽  
Jae Hyuk Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document