scholarly journals Mutational Analysis of Quinolone-Resistant Determining Region gyrA and parC Genes in Quinolone-Resistant ESBL-Producing E. Coli

2021 ◽  
Vol 20 (3) ◽  
Author(s):  
Hairul Aini Hamzah ◽  
Rahmatullah Sirat ◽  
Mohammed Imad A. Mustafa Mahmud ◽  
Roesnita Baharudin

 Introduction: Co-resistance to quinolones among extended spectrum β[1]lactamase (ESBL)-producing E. coli commonly occurs in clinical settings. Quinolones act on DNA gyrase and DNA topoisomerase enzymes, which are coded by gyrA and parC genes, thus any mutation to the genes may affect the drug effectiveness. The objective of the study was to characterize gyrA and parC genes in quinolone-resistant E. coli isolates and correlated the mutations with their phenotypic resistance. Materials and Methods: Thirty-two quinolone-resistant (QR) and six quinolone-sensitive (QS) ESBL-E. coli isolates were identified by antibiotic susceptibility and minimum inhibitory concentration tests. Bioinformatics analysis were conducted to study any mutations occurred in the genes and generate their codon compositions. Results: All the QR ESBL-E. coli isolates were identified as multidrug-resistant bacteria. A single point mutation in the quinolone resistance-determining region (QRDR) of gyrA, at codon 83, caused the substitution amino acid Ser83Leu. It is associated with a high level of resistance to nalidixic acid. However, double mutations Ser83Leu and Asp87Asn in the same region were significantly linked to higher levels of resistance to ciprofloxacin. Cumulative point mutations in gyrA and/or in parC were also correlated significantly (p<0.05) to increased resistance to ciprofloxacin. Conclusion: Together, the findings showed that the mutations in gyrA and parC genes handled the institution of intrinsic quinolone resistance in the ESBL-E. coli isolates. Thus, vigilant monitoring for emergence of new mutation in resistance genes may give an insight into dissemination of QR ESBL-E. coli in a particular region.

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Akihisa Hata ◽  
Noboru Fujitani ◽  
Fumiko Ono ◽  
Yasuhiro Yoshikawa

AbstractThere is a lack of an established antimicrobial resistance (AMR) surveillance system in animal welfare centers. Therefore, the AMR prevalence in shelter dogs is rarely known. Herein, we conducted a survey in animal shelters in Chiba and Kanagawa prefectures, in the Kanto Region, Japan, to ascertain the AMR status of Escherichia coli  (E. coli) prevalent in shelter dogs. E. coli was detected in the fecal samples of all 61 and 77 shelter dogs tested in Chiba and Kanagawa, respectively. The AMR was tested against 20 antibiotics. E. coli isolates derived from 16.4% and 26.0% of samples from Chiba and Kanagawa exhibited resistance to at least one antibiotic, respectively. E. coli in samples from Chiba and Kanagawa prefectures were commonly resistant to ampicillin, piperacillin, streptomycin, kanamycin, tetracycline, and nalidixic acid; that from the Kanagawa Prefecture to cefazolin, cefotaxime, aztreonam, ciprofloxacin, and levofloxacin and that from Chiba Prefecture to chloramphenicol and imipenem. Multidrug-resistant bacteria were detected in 18 dogs from both regions; β-lactamase genes (blaTEM, blaDHA-1, blaCTX-M-9 group CTX-M-14), quinolone-resistance protein genes (qnrB and qnrS), and mutations in quinolone-resistance-determining regions (gyrA and parC) were detected. These results could partially represent the AMR data in shelter dogs in the Kanto Region of Japan.


Pharmacia ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 1-7
Author(s):  
Hawraa Mohammed Al-Rafyai ◽  
Mourouge Saadi Alwash ◽  
Noor Salman Al-Khafaji

Aquatic environment contamination remains a foremost global public health hazards, and symbolizes a significant reservoir of releasing antibiotic resistant bacteria. The survival of Escherichia coli in aquatic environments serves as a potential reservoir of antibiotic resistance, encompassing but not restricted to a plasmid-mediated quinolone resistance (PMQR) mechanism. The current study aimed to detect the presence of the PMQR-qnrA gene in quinolone-resistant E. coli isolates. Sixty-one waterborne E. coli with known phylogroups/subgroups isolated from the Al-Hillah River in Babylon Province, Iraq, were screened for the phenotypic resistance to third-generation quinolones (levofloxacin and ofloxacin) and were further analysed for the presence of the qnrA gene using polymerase chain reaction (PCR). Fifty-seven (93.4%) of 61 E. coli isolates were levofloxacin-resistant, and 55 (90.2%) were ofloxacin-resistant. Among the 57 quinolone-resistant E. coli, 40 (65.57%) isolates were found to carry the PMQR-qnrA gene. Among the 40 qnrA-positive E. coli, 22 (36.1%) isolates were in phylogroup B2, followed by 8 (13.1%) isolates in phylogroup D, 6 (9.8%) isolates in phylogroup B1, and 4 (6.6%) isolates in phylogroup A. The presence of the PMQR-qnrA gene in E. coli belonging to phylogroup B2 and D reflects the need for routine monitoring of antibiotic resistance genes (ARGs) in the Al-Hillah River.


2014 ◽  
Vol 13 (2) ◽  
pp. 311-318 ◽  
Author(s):  
Vera Calhau ◽  
Catarina Mendes ◽  
Angelina Pena ◽  
Nuno Mendonça ◽  
Gabriela Jorge Da Silva

Escherichia coli is simultaneously an indicator of water contamination and a human pathogen. This study aimed to characterize the virulence and resistance of E. coli from municipal and hospital wastewater treatment plants (WWTPs) in central Portugal. From a total of 193 isolates showing reduced susceptibility to cefotaxime and/or nalidixic acid, 20 E. coli with genetically distinct fingerprint profiles were selected and characterized. Resistance to antimicrobials was determined using the disc diffusion method. Extended spectrum β-lactamase and plasmid-mediated quinolone resistance genes, phylogroups, pathogenicity islands (PAIs) and virulence genes were screened by polymerase chain reaction (PCR). CTX-M producers were typed by multilocus sequence typing. Resistance to beta-lactams was associated with the presence of blaTEM,blaSHV, blaCTX-M-15 and blaCTX-M-32. Plasmid-mediated quinolone resistance was associated with qnrA, qnrS and aac(6′)-Ib-cr. Aminoglycoside resistance and multidrug-resistant phenotypes were also detected. PAI IV536, PAI IICFT073, PAI II536 and PAI ICFT073, and uropathogenic genes iutA, papAH and sfa/foc were detected. With regard to the clinical ST131 clone, it carried blaCTX-M-15, blaTEM-type, qnrS and aac(6′)-lb-cr; IncF and IncP plasmids, and virulence factors PAI IV536, PAI ICFT073, PAI IICFT073, iutA, sfa/foc and papAH were identified in the effluent of a hospital plant. WWTPs contribute to the dissemination of virulent and resistant bacteria in water ecosystems, constituting an environmental and public health risk.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 466
Author(s):  
Herbert Galler ◽  
Josefa Luxner ◽  
Christian Petternel ◽  
Franz F. Reinthaler ◽  
Juliana Habib ◽  
...  

In recent years, antibiotic-resistant bacteria with an impact on human health, such as extended spectrum β-lactamase (ESBL)-containing Enterobacteriaceae, methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE), have become more common in food. This is due to the use of antibiotics in animal husbandry, which leads to the promotion of antibiotic resistance and thus also makes food a source of such resistant bacteria. Most studies dealing with this issue usually focus on the animals or processed food products to examine the antibiotic resistant bacteria. This study investigated the intestine as another main habitat besides the skin for multiresistant bacteria. For this purpose, faeces samples were taken directly from the intestines of swine (n = 71) and broiler (n = 100) during the slaughter process and analysed. All samples were from animals fed in Austria and slaughtered in Austrian slaughterhouses for food production. The samples were examined for the presence of ESBL-producing Enterobacteriaceae, MRSA, MRCoNS and VRE. The resistance genes of the isolated bacteria were detected and sequenced by PCR. Phenotypic ESBL-producing Escherichia coli could be isolated in 10% of broiler casings (10 out of 100) and 43.6% of swine casings (31 out of 71). In line with previous studies, the results of this study showed that CTX-M-1 was the dominant ESBL produced by E. coli from swine (n = 25, 83.3%) and SHV-12 from broilers (n = 13, 81.3%). Overall, the frequency of positive samples with multidrug-resistant bacteria was lower than in most comparable studies focusing on meat products.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kaitlin S. Witherell ◽  
Jason Price ◽  
Ashok D. Bandaranayake ◽  
James Olson ◽  
Douglas R. Call

AbstractMultidrug-resistant bacteria are a growing global concern, and with increasingly prevalent resistance to last line antibiotics such as colistin, it is imperative that alternative treatment options are identified. Herein we investigated the mechanism of action of a novel antimicrobial peptide (CDP-B11) and its effectiveness against multidrug-resistant bacteria including Escherichia coli #0346, which harbors multiple antibiotic-resistance genes, including mobilized colistin resistance gene (mcr-1). Bacterial membrane potential and membrane integrity assays, measured by flow cytometry, were used to test membrane disruption. Bacterial growth inhibition assays and time to kill assays measured the effectiveness of CDP-B11 alone and in combination with colistin against E. coli #0346 and other bacteria. Hemolysis assays were used to quantify the hemolytic effects of CDP-B11 alone and in combination with colistin. Findings show CDP-B11 disrupts the outer membrane of E. coli #0346. CDP-B11 with colistin inhibits the growth of E. coli #0346 at ≥ 10× lower colistin concentrations compared to colistin alone in Mueller–Hinton media and M9 media. Growth is significantly inhibited in other clinically relevant strains, such as Acinetobacter baumannii, Pseudomonas aeruginosa, and Klebsiella pneumoniae. In rich media and minimal media, the drug combination kills bacteria at a lower colistin concentration (1.25 μg/mL) compared to colistin alone (2.5 μg/mL). In minimal media, the combination is bactericidal with killing accelerated by up to 2 h compared to colistin alone. Importantly, no significant red blood hemolysis is evident for CDP-B11 alone or in combination with colistin. The characteristics of CDP-B11 presented here indicate that it can be used as a potential monotherapy or as combination therapy with colistin for the treatment of multidrug-resistant infections, including colistin-resistant infections.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1530
Author(s):  
Amanuel Balemi ◽  
Balako Gumi ◽  
Kebede Amenu ◽  
Sisay Girma ◽  
Muuz Gebru ◽  
...  

A study was carried out from August 2017 to February 2018 on lactating dairy cows, one-humped dromedary camels, and goats to determine mastitis in the Bule Hora and Dugda Dawa districts of in Southern Ethiopia. Milk samples from 564 udder quarters and udder halves from 171 animals consisting of 60 dairy cows, 51 camels, and 60 goats were tested for mastitis. Sixty-four positive udder milk samples were cultured, and bacterial mastitis pathogens were isolated and identified. The antibiotic resistance of bacterial isolates from milk with mastitis was tested against nine antimicrobials commonly used in the study area. Cow- and quarter-level prevalence of mastitis in dairy cows, camels, and goats was 33.3%, 26.3%, and 25% and 17.6%, 14.5%, and 20%, respectively. In cattle, the prevalence was significantly higher in Dugda Dawa than in Bule Hora. Major bacterial isolates were coagulase-negative Staphylococcus species (39.1%), S. aureus (17.2%), S. hyicus (14.1%), and S. intermedius and Escherichia coli (9.4% each). In camels, udder abnormality and mastitis were significantly higher in late lactation than in early lactation. Mastitis tends to increase with parity in camels. E. coli isolates were highly resistant to spectinomycin, vancomycin, and doxycycline, whereas most S. aureus isolates were multidrug-resistant. Most of the rural and periurban communities in this area consume raw milk, which indicates a high risk of infection with multidrug-resistant bacteria. We recommend a community-focused training program to improve community awareness of the need to boil milk and the risk of raw milk consumption.


2010 ◽  
Vol 54 (12) ◽  
pp. 5193-5200 ◽  
Author(s):  
Victoire de Lastours ◽  
Françoise Chau ◽  
Florence Tubach ◽  
Blandine Pasquet ◽  
Etienne Ruppé ◽  
...  

ABSTRACT The important role of commensal flora as a natural reservoir of bacterial resistance is now well established. However, whether the behavior of each commensal flora is similar to that of other floras in terms of rates of carriage and risk factors for bacterial resistance is unknown. During a 6-month period, we prospectively investigated colonization with fluoroquinolone-resistant bacteria in the three main commensal floras from hospitalized patients at admission, targeting Escherichia coli in the fecal flora, coagulase-negative Staphylococcus (CNS) in the nasal flora, and α-hemolytic streptococci in the pharyngeal flora. Resistant strains were detected on quinolone-containing selective agar. Clinical and epidemiological data were collected. A total of 555 patients were included. Carriage rates of resistance were 8.0% in E. coli, 30.3% in CNS for ciprofloxacin, and 27.2% in streptococci for levofloxacin; 56% of the patients carried resistance in at least one flora but only 0.9% simultaneously in all floras, which is no more than random. Risk factors associated with the carriage of fluoroquinolone-resistant strains differed between fecal E. coli (i.e., colonization by multidrug-resistant bacteria) and nasal CNS (i.e., age, coming from a health care facility, and previous antibiotic treatment with a fluoroquinolone) while no risk factors were identified for pharyngeal streptococci. Despite high rates of colonization with fluoroquinolone-resistant bacteria, each commensal flora behaved independently since simultaneous carriage of resistance in the three distinct floras was uncommon, and risk factors differed. Consequences of environmental selective pressures vary in each commensal flora according to its local specificities (clinical trial NCT00520715 [http://clinicaltrials.gov/ct2/show/NCT00520715 ]).


2021 ◽  
Author(s):  
Farhan Yusuf ◽  
Kimberley Gilbride

Bacterial isolates found in aquatic ecosystems often carry antibiotic resistance genes (ARGs). These ARGs are often found on plasmids and transposons, which allows them to be proliferate throughout bacterial communities via horizontal gene transfer (HGT) causing dissemination of multidrug resistance. The increase in antibiotic resistance has raised concerns about the ability to continue to use these drugs to fight infectious diseases. Novel synthetic antibiotics like ciprofloxacin that are not naturally found in the environment were developed to prevent resistances. However, ciprofloxacin resistance has occurred through chromosomal gene mutations of type 2 topoisomerases or by the acquisition of plasmid-mediated quinolone resistances (PMQR). A particular PMQR, qnr genes, encoding for pentapeptide repeat proteins that confer low levels of quinolone resistance and protect DNA gyrase and topoisomerase IV from antibacterial activity. These qnr genes have been identified globally in both clinical and environmental isolates. The aim of this study was to determine the prevalence of ciprofloxacin-resistant bacteria in aquatic environments in the Greater Toronto Area and the potential dissemination of ciprofloxacin resistance. With the selective pressure of ciprofloxacin, we hypothesize that ciprofloxacin-resistant bacteria (CipR) in the environment may carry PMQR mechanisms while the sensitive population (CipS) would not carry PMQR genes. Isolates were tested for resistance to an additional 12 different antibiotics and identified using Sanger sequencing PCR products of the 16S rRNA gene. To determine which genes are responsible for ciprofloxacin resistance, multiplex PCR of associated qnr genes, qnrA, qnrB, and qnrS, was carried out on 202 environmental isolates. Our data demonstrate a similar prevalence of qnr genes was found in CipR (19%) and CipS (14%) populations suggesting that the presence of these genes was not necessarily correlated with the phenotypic resistance to the antibiotic. Furthermore, ciprofloxacinresistant bacteria were found in all locations at similar frequencies suggesting that resistance genes are widespread and could possibly arise through HGT events. Overall, determining the underlying cause and prevalence of ciprofloxacin resistance could help re-establish the effectiveness of these antimicrobial compounds.


Author(s):  
Nahla Omer Eltai ◽  
Hadi M. Yassine ◽  
Sara H. Al-Hadidi ◽  
Tahra ElObied ◽  
Asmaa A. Al Thani ◽  
...  

The dissemination of antimicrobial resistance (AMR) bacteria has been associated with the inappropriate use of antibiotics in both humans and animals and with the consumption of food contaminated with resistant bacteria. In particular, the use of antibiotics as prophylactic and growth promotion purposes in food-producing animals has rendered many of the antibiotics ineffective. The increased global prevalence of AMR poses a significant threat to the safety of the world’s food supply. Objectives: This study aims at determining the prevalence of antibiotic-resistant Escherichia coli (E. coli) isolated from local and imported retail chicken meat in Qatar. Methodology: A total of 270 whole chicken carcasses were obtained from three different hypermarket stores in Qatar. A total of 216 E. coli were isolated and subjected to antibiotic susceptibility testing against 18 relevant antibiotics using disc diffusion and micro- dilution methods. Furthermore, extended-spectrum β-lactamase (ESBL) production was determined via a double-disc synergetic test. Isolates harboring colistin resistance were confirmed using multiplex-PCR and DNA sequencing. Results: Nearly 89% (192/216) of the isolates were resistant to at least one antibiotics. In general, isolates showed relatively higher resistance to sulfamethoxazole (62%), tetracycline (59.7%), ampicillin and trimethoprim (52.3%), ciprofloxacin (47.7%), cephalothin, and colistin (31.9%). On the other hand, less resistance was recorded against amoxicillin/clavulanic acid (6%), ceftriaxone (5.1%), nitrofurantoin (4.2%) and piperacillin/tazobactam (4.2%), cefepime (2.3%), meropenem (1.4%), ertapenem (0.9%), and amikacin (0.9%). Nine isolates (4.2%) were ESBL producers. Furthermore, 63.4% were multidrug-resistant (MDR). The percentage of MDR, ESBL producers, and colistin-resistant isolates was significantly higher among local isolates compared to imported chicken samples. Conclusion: We reported a remarkably high percentage of the antibiotic-resistant E. coli in chicken meat sold at retail in Qatar. The high percentage of MDR and colistin isolates is troublesome to the food safety of raw chicken meat and the potential of antibiotic resistance spread to public health. Our findings support the need for the implementation of one health approach to address the spread of antimicrobial resistance and the need for a collaborative solution.


Author(s):  
Anurag D. Zaveri ◽  
Dilip N. Zaveri ◽  
Lakshmi Bhaskaran

Hospital Acquired Infections (HAIs) are a significant concern for healthcare setups, as it increases the overall cost of treatment, patients stay in hospitals, making them susceptible to secondary and tertiary infections and, sometimes, mortality1. To prevent or control HAIs, evaluating the organisms isolated from the critically maintained areas is considered of epitome importance and everlasting practice in the healthcare industry. Identifying such organisms and screening them for antibiotic resistance is mandatory, but it also helps professionals understand colonization trends. Sensitive areas of healthcare setups were screened monthly from years 2017 to 2020. A total of 4400 samples of hospital hygiene, e.g., intravenous drip stands, ventilator surface, anesthetist’s trolley, patient’s bed, instrument trolley, etcetera, were collected. Isolated organisms were cultured and screened using the CLSI technique. E. coli, Pseudomonas spp., and Klebsiella spp. were found in both previous to COVID current samples. Multidrug-resistant organisms were subjected to molecular characterization to detect the presence of carbapenem genes. Evaluation data of both pre-and during Coronavirus Disease or COVID-19 were compared. The prevalence of pathogenic (Klebsiella spp., E. coli, and Pseudomonas spp.) and non-pathogenic (Staphylococcus aureus and Bacillus spp.) strains in healthcare setups decreased drastically (Klebsiella spp. from 80% to 20%, E.coli from 90% to 10% and Pseudomonas spp. from 80% to 20%). It is possible only because of the awareness in non-specialists and healthcare workers due to the unforeseen critical situation proving to be a blessing for the future generation.


Sign in / Sign up

Export Citation Format

Share Document