Effect of Adding a Galacto-Oligosaccharides/Fructo-Oligosaccharides (GOS/FOS®) Mixture to a Normal and Low Calcium Diet, on Calcium Absorption and Bone Health in Ovariectomy-Induced Osteopenic Rats

2018 ◽  
Vol 104 (3) ◽  
pp. 301-312
Author(s):  
Mariana Seijo ◽  
Gabriel Bryk ◽  
Magalí Zeni Coronel ◽  
Marina Bonanno ◽  
María Esther Río ◽  
...  
1997 ◽  
Vol 93 (3) ◽  
pp. 257-263 ◽  
Author(s):  
Piergiorgio Messa ◽  
Martino Marangella ◽  
Luisa Paganin ◽  
Mara Codardini ◽  
Aldo Cruciatti ◽  
...  

1. Dietary calcium restriction, an efficient practice in reducing urinary calcium excretion, has been reported to induce either an increase or no change in oxalate excretion, questioning its use in hypercalciuric stone-forming patients. In addition, calcium restriction has been previously demonstrated to induce other urinary changes which might influence the relative supersaturation of calcium oxalate. So the overall effect of calcium deprivation on the relative supersaturation of calcium oxalate is unpredictable. 2. The aim of the study was to evaluate the effect of dietary calcium restriction on the relative supersaturation of calcium oxalate in the urine of stone-forming patients utilizing a computer methodology which takes into account the main soluble complex species of oxalate. 3. We studied 34 stone-forming patients on both a free-choice diet, whose Ca and oxalate content (24 and 1.2 mmol respectively) was assessed by dietary inquiry, and after 30 days on a prescribed low-calcium and normal oxalate diet (11 and 1.1 mmol respectively). Under both conditions, the excretion of the main urinary parameters related to dietary composition, electrolytes, oxalate and daily citrate urinary excretion, were measured. The relative supersaturation of calcium oxalate was calculated by means of an iterative computer method which takes into account the main soluble complex species on which the solubility of calcium oxalate is dependent. In addition, intact parathyroid hormone and 1,25-dihydroxyvitamin D blood levels were also evaluated. In 13 of the patients intestinal calcium absorption was evaluated during both a free- and a low-calcium diet, utilizing kinetics methodology. 4. The low-calcium diet induced, together with an expected reduction of calcium excretion, a marked increase in oxalate urinary output. This finding was independent of the presence or otherwise of hypercalciuria and of the serum levels of parathyroid hormone and vitamin D. Intestinal calcium absorption was also stimulated by calcium deprivation and its levels were well correlated with oxalate excretion. Minor changes in magnesium and citrate excretion were also observed. The overall effect on the relative supersaturation of calcium oxalate consisted in a substantial increase in this parameter during the low-calcium diet. 5. In conclusion, our data reinforce the concept that dietary calcium restriction has potentially deleterious effects on lithogenesis, by increasing the relative supersaturation of calcium oxalate.


1977 ◽  
Vol 74 (3) ◽  
pp. 345-354 ◽  
Author(s):  
J. FOX ◽  
R. SWAMINATHAN ◽  
T. M. MURRAY ◽  
A. D. CARE

SUMMARY The phenomenon of adaptation of intestinal calcium absorption to changes in dietary calcium has been studied in conscious pigs with Thiry–Vella jejunal loops. The result of decreasing the calcium content of the diet from 1·2 to 0·1% was an increase in the efficiency of the net absorption of calcium from the fluid used to perfuse the jejunal loop; this increase took place 4–6 days after the change in diet. A similar effect was noted in four pigs which had previously been parathyroidectomized and in two thyroparathyroidectomized pigs with thyroxine replacement therapy. The effect seen in the parathyroidectomized animals was not attributable to an increase in the concentration gradient of calcium ions between the jejunal lumen and the blood after the change to the low calcium diet. There was a marked increase in the amount of calcium-binding protein in the mucosa taken from the distal three-quarters of the small intestine of intact pigs fed a low calcium diet. However, after parathyroidectomy, the level of calcium in the diet had no significant effect on the amount of calcium-binding protein in the small intestine. It is concluded that, in pigs, neither parathyroid hormone nor calcitonin is necessary for intestinal adaptation to a low calcium diet and that, although this adaptation may be mediated by 1,25-dihydroxycholecalciferol, a significant increase in the level of calcium-binding protein in the intestine is only seen when the parathyroid glands are intact.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Zhengwang Yu ◽  
Jie Huang ◽  
Zhongxin Zhou

AbstractCage layer osteoporosis (CLO) is a common bone metabolism disease in the breeding industry of China. However, effective prevention for CLO has not been developed. Icariin (ICA), the main bioactive component of the Chinese herb Epimedium, has been shown to have good therapeutic effects on bone-related diseases. In this study, the effects of ICA were further evaluated in a low-calcium diet-induced CLO, and a serum metabolomics assay was performed to understand the underlying mechanisms. A total of 144 31-wk-old Lohmann pink-shell laying hens were randomly allocated to 4 groups with 6 replicates of 6 hens per replicate. The 4 dietary treatment groups consisted of a basal diet (3.5% calcium), a low-calcium diet (2.0% calcium), and a low-calcium diet supplemented with 0.5 or 2.0 g/kg ICA. The results showed that ICA exerted good osteoprotective effects on low-calcium diet-induced CLO. ICA significantly increased femur bone mineral density, improved bone microstructure, decreased bone metabolic level, and upregulated mRNA expression of bone formation genes in femoral bone tissue. Serum untargeted metabolomics analysis showed that 8 metabolite levels were significantly changed after ICA treatment, including increased contents of 7-dehydrocholesterol, 7-oxocholesterol, desmosterol, PC (18:1(9Z)/18:1(9Z)), PS (18:0/18:1(9Z)), N,N-dimethylaniline and 2-hydroxy-butanoic acid and decreased N2,N2-dimethylguanosine. Metabolic pathway analysis based on the above 8 metabolites indicated that ICA mainly perturbed steroid biosynthesis and glycerophospholipid metabolism. These findings suggest that ICA can effectively prevent bone loss in low-calcium diet-induced CLO by mediating steroid biosynthesis and glycerophospholipid metabolism and provide new information for the regulation of bone metabolic diseases.


1989 ◽  
Vol 7 (5) ◽  
pp. 423-427 ◽  
Author(s):  
Samarendra N. Baksi ◽  
Raymond H. Abhold ◽  
Robert C. Speth

Endocrinology ◽  
2007 ◽  
Vol 148 (3) ◽  
pp. 1396-1402 ◽  
Author(s):  
Yurong Song ◽  
James C. Fleet

We tested the hypothesis that low vitamin D receptor (VDR) level causes intestinal vitamin D resistance and intestinal calcium (Ca) malabsorption. To do so, we examined vitamin D regulated duodenal Ca absorption and gene expression [transient receptor potential channel, vallinoid subfamily member 6 (TRPV6), 24-hydroxylase, calbindin D9k (CaBP) mRNA, and CaBP protein] in wild-type mice and mice with reduced tissue VDR levels [i.e. heterozygotes for the VDR gene knockout (HT)]. Induction of 24-hydroxylase mRNA levels by 1,25 dihydroxyvitamin D3 [1,25(OH)2 D3] injection was significantly reduced in the duodenum and kidney of HT mice in both time-course and dose-response experiments. TRPV6 and CaBP mRNA levels in duodenum were significantly induced after 1,25(OH)2 D3 injection, but there was no difference in response between wild-type and HT mice. Feeding a low-calcium diet for 1 wk increased plasma PTH, renal 1α-hydroxylase (CYP27B1) mRNA level, and plasma 1,25(OH)2 D3, and this response was greater in HT mice (by 88, 55, and 37% higher, respectively). In contrast, duodenal TRPV6 and CaBP mRNA were not higher in HT mice fed the low-calcium diet. However, the response of duodenal Ca absorption and CaBP protein to increasing 1,25(OH)2 D3 levels was blunted by 40% in HT mice. Our data show that low VDR levels lead to resistance of intestinal Ca absorption to 1,25(OH)2 D3, and this resistance may be due to a role for the VDR (and VDR level) in the translation of CaBP.


Sign in / Sign up

Export Citation Format

Share Document