The Effect of the Compression on the Mechanical Properties of Wood Material

2007 ◽  
Vol 537-538 ◽  
pp. 41-46 ◽  
Author(s):  
László Kuzsella ◽  
Imre Szabó

The wood is one of the most favourable structural material. It appears on all fields of the ordinary life. It is difficult to say an application where the wood is not used due to its cheap price, availability and just simply the beauty. Beside of the wide range of process technologies a new process appeared. This process changes the properties of the material and brings many new applications to this traditional material. This process is the compression of the structural wood material. This publication deals with the effect of the compression on the mechanical properties of two hardwoods (beech: fagus sylvatica, oak: quercus) by the help of the three-point bending test and the Charpy impact test.

2013 ◽  
Vol 486 ◽  
pp. 283-288
Author(s):  
Ladislav Fojtl ◽  
Soňa Rusnáková ◽  
Milan Žaludek

This research paper deals with an investigation of the influence of honeycomb core compression on the mechanical properties of sandwich structures. These structures consist of prepreg facing layers and two different material types of honeycomb and are produced by modified compression molding called Crush-Core technology. Produced structures are mechanically tested in three-point bending test and subjected to low-velocity impact and Charpy impact test.


2018 ◽  
Vol 56 (2A) ◽  
pp. 133-140
Author(s):  
Ho Ngoc Minh

In this paper, the effect  of modified nanosilica as a reinforcement agent on the performance of epoxy resin using tetrabutyl titanate (TBuT) hardener were investigated. Morphology of the epoxy/modified silica composites was determined by Scanning Electron Microscopy (SEM) method. Impact strength and flexural strength of the composites were measured by Charpy impact test and three-point bending test mode methods, respectively. Fracture toughness and fracture energy were calculated according to pre-cracked, single edge notched method with specimens in three-point bending geometry and suitable equations. The mechanical properties and fracture toughness of composites were significantly enhanced with loading nanosilica content to 5 wt.%. 


2012 ◽  
Vol 569 ◽  
pp. 215-218
Author(s):  
Chun Lei Zhang ◽  
Kun Qiao ◽  
Bo Zhu ◽  
Zhi Tao Lin ◽  
Ben Xie ◽  
...  

The effect of different layers of glass cloth on carbon fiber reinforced hybrid composite core is studied in this work. Carbon fiber reinforced hybrid composite of different glass cloth content is made by pultrusion processing. Three point bending test and charpy impact test are taken to evaluate the toughness of different composite, and scanning electronic micro-scopy (SEM) and photograph are carried out to characterize the structure of different composite after destroyed. It is shown that, though at the cost of drop of tensile strength, the increase of glass cloth content in carbon fiber reinforced hybrid composite core improves the flexural strength and impact resistant, and does not affect the microscope destroy pattern and the microscopic structure of failure samples.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7281
Author(s):  
Daniel Łączny ◽  
Marek Macko ◽  
Krzysztof Moraczewski ◽  
Zbigniew Szczepański ◽  
Andrzej Trafarski

This paper presents results of a study on the effect of filler size in the form of 15 wt% corn stalk (CS) fibers on the mechanical and thermomechanical properties of polylactide (PLA) matrix composites. In the test, polylactidic acid (PLA) is filled with four types of length of corn stalk fibers with a diameter of 1 mm, 1.6 mm, 2 mm and 4 mm. The composites were composed by single screw extrusion and then samples were prepared by injection molding. The mechanical properties of the composites were determined by static tensile test, static bending test and Charpy impact test while the thermo-mechanical properties were determined by dynamic mechanical thermal analysis (DMTA). The composite structures were also observed using X-ray microcomputed tomography and scanning electron microscopy. In the PLA/CS composites, as the filler fiber diameter increased, the degradation of mechanical properties relative to the matrix was observed including tensile strength (decrease 22.9–51.1%), bending strength (decrease 18.9–36.6%) and impact energy absorption (decrease 58.8–69.8%). On the basis of 3D images of the composite structures for the filler particles larger than 2 mm a weak dispersion with the filler was observed, which is reflected in a significant deterioration of the mechanical and thermomechanical properties of the composite. The best mechanical and thermomechanical properties were found in the composite with filler fiber of 1 mm diameter. Processing resulted in a more than 6-fold decrease in filler fiber length from 719 ± 190 µm, 893 ± 291 µm, 1073 ± 219 µm, and 1698 ± 636 µm for CS1, CS1.6, CS2, and CS4 fractions, respectively, to 104 ± 43 µm, 123 ± 60 µm, 173 ± 60 µm, and 227 ± 89 µm. The fabricated green composites with 1 to 2 mm corn stalk fiber filler are an alternative to traditional plastic based materials in some applications.


2010 ◽  
Vol 638-642 ◽  
pp. 675-680 ◽  
Author(s):  
Martina Thomann ◽  
Nina von der Höh ◽  
Dirk Bormann ◽  
Dina Rittershaus ◽  
C. Krause ◽  
...  

Current research focuses on magnesium based alloys in the course of searching a resorbable osteosynthetic material which provides sufficient mechanical properties besides a good biocompatibility. Previous studies reported on a favorable biocompatibility of the alloys LAE442 and MgCa0.8. The present study compared the degradation process of cylindrical LAE442 and MgCa0.8 implants after 12 months implantation duration. Therefore, 10 extruded implants (2.5 x 25 mm, cross sectional area 4.9 mm²) of both alloys were implanted into the medullary cavity of both tibiae of rabbits for 12 months. After euthanization, the right bone-implant-compound was scanned in a µ-computed tomograph (µCT80, ScancoMedical) and nine uniformly distributed cross-sections of each implant were used to determine the residual implants´ cross sectional area (Software AxioVisionRelease 4.5, Zeiss). Left implants were taken out of the bone carefully. After weighing, a three-point bending test was carried out. LAE442 implants degraded obviously slower and more homogeneously than MgCa0.8. The mean residual cross sectional area of LAE442 implants was 4.7 ± 0.07 mm². MgCa0.8 showed an area of only 2.18 ± 1.03 mm². In contrast, the loss in volume of LAE442 pins was more obvious. They lost 64 % of their initial weight. The volume of MgCa0.8 reduced clearly to 54.4 % which corresponds to the cross sectional area results. Three point bending tests revealed that LAE442 showed a loss in strength of 71.2 % while MgCa0.8 lost 85.6 % of its initial strength. All results indicated that LAE442 implants degraded slowly, probably due to the formation of a very obvious degradation layer. Degradation of MgCa0.8 implants was far advanced.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Madhuri Chandrashekhar Deshpande ◽  
Rajesh Chaudhari ◽  
Ramesh Narayanan ◽  
Harishwar Kale

Purpose This study aims to develop indium-based solders for cryogenic applications. Design/methodology/approach This paper aims to investigate mechanical properties of indium-based solder formulations at room temperature (RT, 27 °C) as well as at cryogenic temperature (CT, −196 °C) and subsequently to find out their suitability for cryogenic applications. After developing these alloys, mechanical properties such as tensile and impact strength were measured as per American Society for Testing and Materials standards at RT and at CT. Charpy impact test results were used to find out ductile to brittle transition temperature (DBTT). These properties were also evaluated after thermal cycling (TC) to find out effect of thermal stress. Scanning electron microscope analysis was performed to understand fracture mechanism. Results indicate that amongst the solder alloys that have been studied in this work, In-34Bi solder alloy has the best all-round mechanical properties at RT, CT and after TC. Findings It can be concluded from the results of this work that In-34Bi solder alloy has best all-round mechanical properties at RT, CT and after TC and therefore is the most appropriate solder alloy amongst the alloys that have been studied in this work for cryogenic applications Originality/value DBTT of indium-based solder alloys has not been found out in the work done so far in this category. DBTT is necessary to decide safe working temperature range of the alloy. Also the effect of TC, which is one of the major reasons of failure, was not studied so far. These parameters are studied in this work.


2016 ◽  
Vol 851 ◽  
pp. 168-172
Author(s):  
Yustiasih Purwaningrum ◽  
Triyono ◽  
Tegar Rileh Argihono ◽  
Ryan Sutrisno

Mechanical and microstructure of double side weld with various angle groove was studied in this research. LR Gr A steel plates (12 mm thickness) were welded using GMAW with corresponding 180 A, 23 V, and 20 l/min respectively with current, voltage, and gas flow. Shielding gas and filler metals used are argon and ER 70S-6. The angle groove that used were 20⁰, 40⁰ and 60⁰. The measured of mechanical properties with regard to hardness, toughness and strength using, Vickers hardness test, Charpy impact test and tensile test respectively The microstructure examined with optical microscope. The results show that the highest hardness values found in welds with groove angle 40ͦ. The transition temperatures of weld metals are at temperatures between -20°C to 0°C. Weld metals with all variations of the groove angle has a value of less than 0.1 mmpy. Microstructure of base metals and HAZ were ferrite and pearlite. While the microstructure of weld metals are accicular ferrite, grain boundary ferrite and Widmanstatten ferrite.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 258 ◽  
Author(s):  
Che Nor Aiza Jaafar ◽  
Muhammad Asyraf Muhammad Rizal ◽  
Ismail Zainol

The mechanical performance of silica modified epoxy at various concentration of sodium hydroxide for surface treatment of multi-axial kenaf has been analyzed. Epoxy resin with amine hardener was modified with silica powder at 20 phr and toughened by treated kenaf fiber that immerses in various concentrations of sodium hydroxide (NaOH) ranging from 0% to 9% of weight. The composite was analyzed through differential scanning calorimetry (DSC) to ensure complete curing process. The mechanical properties of the composites were analyzed through flexural test, Charpy impact test and DSC to ensure the complete curing process. DSC analysis results show epoxy sample was completely cured at above 73°C that verifies the curing temperature for preparation for the composite. Hence, 3% NaOH treated composite exhibits the best mechanical properties, with 10.6 kJ/m2 of impact strength, 54.1 MPa of flexural strength and 3.5 GPa of flexural modulus. It is due to the improvement of fiber-matrix compatibility. Analysis by SEM also revealed that a cleaner surface of kenaf fiber treated at 3% NaOH shown cleaner surface, thus, in turn, improve surface interaction between fiber and matrix of the composite. The composites produced in this work has high potential to be used in automotive and domestics appliances.


2007 ◽  
Vol 14 (04) ◽  
pp. 817-820
Author(s):  
MIN HUANG ◽  
KE-ZHI LI ◽  
HE-JUN LI ◽  
QIAN-GANG FU ◽  
GUO-DONG SUN

SiC coating for carbon/carbon composites was prepared by pack cementation method. The effects of coating process on the microstructure and the mechanical properties of C / C composites were analyzed by SEM and three-point bending test, respectively. As the infiltrated Si improved the interfaces bonding during the coating process, the flexural strength and flexural modulus of SiC -coated carbon/carbon composites were both increased by about 10% than the naked C / C composites. In addition, the mechanism of the change of failure mode of SiC coated C / C composites and naked C / C composites was addressed.


Sign in / Sign up

Export Citation Format

Share Document