Sources and Properties of Natural Organic Matter (NOM) in Water Along the Dongjiang River (the Source of Hong Kong’s Drinking Water) and Toxicological Assay of Its Chlorination By-Products

2007 ◽  
Vol 54 (4) ◽  
pp. 597-605 ◽  
Author(s):  
Y. Liang ◽  
H. C. Hong ◽  
L. H. Dong ◽  
C. Y. Lan ◽  
B. P. Han ◽  
...  
2019 ◽  
Vol 5 (1) ◽  
Author(s):  
Muhammad Firdaus Kamal ◽  
Euis Nurul Hidayah

Kehadiran NOM menurunkan kualitas air baku untuk air minum dengan mengubah sifat organoleptik, mengganggu sistem pengendapan dan meningkatkan penggunaan koagulan, menyebabkan penyumbatan pada saringan dan distribusi air minum. Komponen NOM, seperti humic acids (HA) dan fulvic acids (FA) yang bereaksi dengan logam berat menyebabkan terbentuknya senyawa toksik dan berkontribusi terhadap pembentukan disinfection by products (DBPs) yang menyebabkan potensi adanya senyawa karsinogenik dalam pengolahan air minum secara konvensional. Salah satu metode penyisihan bahan organik dalam air adalah dengan peningkatan proses koagulasi, dengan pretreatment sebelum proses koagulasi. Tujuan dari penelitian ini adalah mengetahui pengaruh pre-oksidasi dan koagulasi terhadap penyisihan bahan organik pada air Kali Jagir yang digunakan untuk produksi air minum. Berdasarkan hasil analisis, konsentrasi TOC pada air baku sebesar 11,67  mg/liter dan nilai UV absorbansi 254 nm sebesar 0,10895 cm-1, sehingga diperoleh nilai SUVA sebesar 0,934 L/mg/cm, sehingga diketahui karakteristik pada air Kali Surabaya yang cenderung hidrofilik dengan berat molekul rendah dan kebanyakan bukan humik yang mengindikasikan bahwa air tersebut dihasilkan dari kegiatan domestik dan industri. Pada kombinasi pre-oksidasi dan koagulasi, CaOCl2 dengan dosis 25 mg/liter mampu menurunkan TOC dari 11,67 mg/liter menjadi 9,11 mg/liter, sedangkan permanganat dengan dosis 0,8 mg/liter hanya mampu menurunkan TOC dari 11,67 mg/liter menjadi 11,25 mg/liter. Kombinasi pre-oksidasi dan koagulasi mampu menurunkan bahan organik aromatik, ditunjukkan dengan nilai absorbansi UV210 air baku yaitu 1,4983 cm-1 menjadi 1,2720 cm-1 dengan pre-oksidasi KMnO4-koagulan Al2(SO4)3 dan 1,3152 cm-1 pada pre-oksidasi CaOCl2-koagulan Al2(SO4)3. Kata kunci: bahan organik alami, koagulasi, pre-oksidasi. The presence of NOM reduces air quality for drinking water with changes in organoleptic properties, deposition systems and increased use of coagulants, blockages in filters and distribution of drinking water. NOM components, such as humic acid (HA) and fulvic acid (FA) which are printed with heavy metals cause the formation of toxic compounds and contribute to product disinfection (DBPs) which produce potential carcinogenic compounds in conventional drinking water treatment. One method of removing organic matter in water is by increasing the coagulation process, with pretreatment before the coagulation process. The purpose of this study was to determine the effect of pre-oxidation and coagulation on the removal of organic material in Kali Jagir water used for the production of drinking water. Based on the results of the analysis, TOC concentration in raw water is 11.67 mg/liter and UV absorbance value 254 nm is 0.10895 cm-1, so that the SUVA value is 0.934 L/mg/cm, so it is known the characteristics of the Surabaya River water which tend to be hydrophilic with low molecular weight and most not humic which indicates that the water is produced from domestic and industrial activities. In a combination of preoxidation and coagulation, CaOCl2 with a dose of 25 mg/liter was able to reduce TOC from 11.67 mg/liter to 9.11 mg/liter, while permanganate at a dose of 0.8 mg/liter was only able to reduce TOC from 11,67 mg/liter to 11.25 mg/liter. The combination of preoxidation and coagulation is able to reduce aromatic organic matter, indicated by the absorbance value of UV210 of raw water, namely 1.4983 cm-1 to 1.2720 cm-1 with the KMnO4-coagulant Al2(SO4)3 and 1.3152 cm-1 preoxidation in preoxidation CaOCl2-coagulant (SO4)3. Keywords: natural organic matter, coagulation, pre-oxidation.


10.14311/334 ◽  
2002 ◽  
Vol 42 (2) ◽  
Author(s):  
A. Grünwald ◽  
B. Šťastný ◽  
K. Slavíčková ◽  
M. Slavíček

Recent drinking water regulations have lowered the standards for disinfection by-products and have added new disinfection by-products for regulation. Natural organic matter (NOM), mainly humic compounds, plays a major role in the formation of undesirable organic by-products following disinfection of drinking water. Many disinfection by-products have adverse carcinogenic or mutagenic effects on human health. This paper deals with the formation potencial of disinfection by-products in water samples taken from different places in the Flaje catchment.


2020 ◽  
Vol 6 (3) ◽  
pp. 779-794 ◽  
Author(s):  
Anna Andersson ◽  
Elin Lavonen ◽  
Mourad Harir ◽  
Michael Gonsior ◽  
Norbert Hertkorn ◽  
...  

Disinfection by-products (DBPs) are potentially toxic compounds formed upon chemical disinfection of drinking water. This study evaluate how treatment approaches affect DBP formation and composition.


2014 ◽  
Vol 5 (1) ◽  
pp. 72-82
Author(s):  
Dhaouadi Mellahi ◽  
Ridha Zerdoumi ◽  
Nacer Rebbani ◽  
Abdelhak Gheid

In Algeria, the use of chlorine in drinking water treatment is a widespread practice. When chlorine combines with natural organic matter (NOM), it forms various chlorine by-products such as trihalomethanes (THMs). In this work, we studied the relationship between chlorine consumption and THM formation, by chlorination of hydrophobic and transphilic (TRS) fractions. We compared the kinetic behavior and the THM formation potential of two major dams in east Algeria. A nonlinear regression modeling study showed a good correlation of the specific chlorine consumption and the specific THM formation. In the case of Ain Zeda dam and at pH = 7, the specific THM yield coefficients αS were: 6.57 and 10.22 μg-THM/mg-Cl2.mg-C.L−1 for hydrophobic and TRS fractions, respectively, while at the same pH, they were 12.07 and 23.66 μg-THM/mg-Cl2.mg-C.L−1 for Ain Dalia dam. Although the NOM concentration of Ain Zeda dam was higher than that of Ain Dalia dam, the THM formation potential of Ain Dalia dam was greater than that of Ain Zeda dam. It seems clear that the water source origin and characteristics play a key role in this case. They affect the THM formation due to the complex composition of humic substances which differs from one source to another.


2004 ◽  
Vol 4 (5-6) ◽  
pp. 215-222 ◽  
Author(s):  
A.R. Costa ◽  
M.N. de Pinho

Membrane fouling by natural organic matter (NOM), namely by humic substances (HS), is a major problem in water treatment for drinking water production using membrane processes. Membrane fouling is dependent on membrane morphology like pore size and on water characteristics namely NOM nature. This work addresses the evaluation of the efficiency of ultrafiltration (UF) and Coagulation/Flocculation/UF performance in terms of permeation fluxes and HS removal, of the water from Tagus River (Valada). The operation of coagulation with chitosan was evaluated as a pretreatment for minimization of membrane fouling. UF experiments were carried out in flat cells of 13.2×10−4 m2 of membrane surface area and at transmembrane pressures from 1 to 4 bar. Five cellulose acetate membranes were laboratory made to cover a wide range of molecular weight cut-off (MWCO): 2,300, 11,000, 28,000, 60,000 and 75,000 Da. Severe fouling is observed for the membranes with the highest cut-off. In the permeation experiments of raw water, coagulation prior to membrane filtration led to a significant improvement of the permeation performance of the membranes with the highest MWCO due to the particles and colloidal matter removal.


2016 ◽  
Vol 283 ◽  
pp. 330-337 ◽  
Author(s):  
Abdullah Ogutverici ◽  
Levent Yilmaz ◽  
Ulku Yetis ◽  
Filiz B. Dilek

Sign in / Sign up

Export Citation Format

Share Document