scholarly journals Effects of Ten Antibiotics on Seed Germination and Root Elongation in Three Plant Species

2010 ◽  
Vol 60 (2) ◽  
pp. 220-232 ◽  
Author(s):  
Derek G. Hillis ◽  
James Fletcher ◽  
Keith R. Solomon ◽  
Paul K. Sibley
Plants ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 241 ◽  
Author(s):  
Jana Jurová ◽  
Martina Matoušková ◽  
Anna Wajs-Bonikowska ◽  
Danuta Kalemba ◽  
Marek Renčo ◽  
...  

Impatiens parviflora is non-native invasive plant species occupying large areas all over the Europe and threatens native communities by altering their species composition and reducing native biodiversity. The factor responsible for its spreading could be explained by releasing biochemical to the environment. On the other hands, high demand on secondary metabolites as potential source of new ecofriendly biocides could be beneficial. The analysis of I. parviflora essential oil (EO) led us to identify more than 60 volatiles. The main compound was hexahydrofarnesyl acetone, other dominant components were phytol, carvacrol, germacra-4(15),5,10(14)-trien-1-α-ol, and pentacosane. The potential phytotoxic effect of I. parviflora EO collected in two vegetation periods (summer and autumn) was evaluated on seed germination and root elongation of three dicot species (Raphanus sativus, Lepidum sativum, and Lactuca sativa) and on one monocot species (Triticum aestivum). The seed germination of only one dicot species, L. sativa, was affected by both EOs. In contrast, seed germination of monocot species T. aestivum was influenced only by the highest doses of EOs isolated from I. parviflora in autumn. The root elongation of tested plant species was less influenced by I. parviflora EOs. L. sativum showed sensitivity to one dose of EOs hydrodistilled in summer, while the monocot species was influenced by both EOs samples in highest doses. Our findings revealed that I. parviflora contained phenolics that were phytotoxic to the germination of some plant species, mainly at higher EOs doses, while root elongation of tested plants was not suppressed by essential oils.


2015 ◽  
Vol 75 (2 suppl) ◽  
pp. 57-62 ◽  
Author(s):  
CR Klauck ◽  
MAS Rodrigues ◽  
LB Silva

<p>In the present study, leachate toxicity of a municipal solid waste landfill located in the Sinos River Valley region (southern Brazil) was evaluated using plant bioassays. Leachate toxicity was assessed by analysis of seed germination and root elongation of lettuce (<italic>Lactuca sativa</italic> L.) and rocket plant (<italic>Eruca sativa</italic> Mill.) and root elongation of onions (<italic>Allium cepa</italic> L.). Bioassays were performed by exposing the seeds of <italic>L. sativa</italic> and <italic>E. sativa</italic> and the roots of <italic>A. cepa</italic> to raw leachate, treated leachate (biological treatment) and negative control (tap water). The levels of metals detected in both samples of leachate were low, and raw leachate showed high values for ammoniacal nitrogen and total Kjeldahl nitrogen. There is a reduction in the values of several physicochemical parameters, which demonstrates the efficiency of the treatment. Both <italic>L. sativa</italic> and <italic>A. cepa</italic>showed a phytotoxic response to landfill leachate, showing reduced root elongation. However, the responses of these two plant species were different. Root elongation was significantly lower in <italic>A. cepa</italic> exposed to treated leachate, when compared to negative control, but did not show any difference when compared to raw leachate. In <italic>L. sativa</italic>, seeds exposed to the raw leachate showed significant reduction in root elongation, when compared to treated leachate and negative control. Seed germination showed no difference across the treatments. The results of the study show that plant species respond differently and that municipal solid waste landfill leachate show phytotoxicity, even after biological treatment.</p>


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1616
Author(s):  
Božena Šerá ◽  
Vladimír Scholtz ◽  
Jana Jirešová ◽  
Josef Khun ◽  
Jaroslav Julák ◽  
...  

The legumes (Fabaceae family) are the second most important agricultural crop, both in terms of harvested area and total production. They are an important source of vegetable proteins and oils for human consumption. Non-thermal plasma (NTP) treatment is a new and effective method in surface microbial inactivation and seed stimulation useable in the agricultural and food industries. This review summarizes current information about characteristics of legume seeds and adult plants after NTP treatment in relation to the seed germination and seedling initial growth, surface microbial decontamination, seed wettability and metabolic activity in different plant growth stages. The information about 19 plant species in relation to the NTP treatment is summarized. Some important plant species as soybean (Glycine max), bean (Phaseolus vulgaris), mung bean (Vigna radiata), black gram (V. mungo), pea (Pisum sativum), lentil (Lens culinaris), peanut (Arachis hypogaea), alfalfa (Medicago sativa), and chickpea (Cicer aruetinum) are discussed. Likevise, some less common plant species i.g. blue lupine (Lupinus angustifolius), Egyptian clover (Trifolium alexandrinum), fenugreek (Trigonella foenum-graecum), and mimosa (Mimosa pudica, M. caesalpiniafolia) are mentioned too. Possible promising trends in the use of plasma as a seed pre-packaging technique, a reduction in phytotoxic diseases transmitted by seeds and the effect on reducing dormancy of hard seeds are also pointed out.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 741
Author(s):  
Rocío Fernández-Zamudio ◽  
Pablo García-Murillo ◽  
Carmen Díaz-Paniagua

In temporary ponds, seed germination largely determines how well aquatic plant assemblages recover after dry periods. Some aquatic plants have terrestrial morphotypes that can produce seeds even in dry years. Here, we performed an experiment to compare germination patterns for seeds produced by aquatic and terrestrial morphotypes of Ranunculus peltatus subsp. saniculifolius over the course of five inundation events. During the first inundation event, percent germination was higher for terrestrial morphotype seeds (36.1%) than for aquatic morphotype seeds (6.1%). Seed germination peaked for both groups during the second inundation event (terrestrial morphotype: 47%; aquatic morphotype: 34%). Even after all five events, some viable seeds had not yet germinated (terrestrial morphotype: 0.6%; aquatic morphotype: 5%). We also compared germination patterns for the two morphotypes in Callitriche brutia: the percent germination was higher for terrestrial morphotype seeds (79.5%) than for aquatic morphotype seeds (41.9%). Both aquatic plant species use two complementary strategies to ensure population persistence despite the unpredictable conditions of temporary ponds. First, plants can produce seeds with different dormancy periods that germinate during different inundation periods. Second, plants can produce terrestrial morphotypes, which generate more seeds during dry periods, allowing for re-establishment when conditions are once again favorable.


2009 ◽  
Vol 27 (3) ◽  
pp. 129-133
Author(s):  
Taun Beddes ◽  
Heidi A. Kratsch

Abstract Many western native plant species occur in areas characterized by well-drained soils low in organic matter. Some drought-tolerant native plant species exhibit poor seed germination. It was hypothesized that traditional growing substrates high in organic matter may impede their germination; therefore, stratified seeds of roundleaf buffaloberry (Shepherdia rotundifolia) and silver buffaloberry (Shepherdia argentea) were sown in three substrates differing in organic matter and drainage properties. Seed flats were irrigated twice daily to container capacity, and held on a greenhouse bench for 40 days. Seeds of roundleaf buffaloberry exhibited greatest total germination in a calcined montmorillonite calcined clay substrate (66%); seeds exhibited low germination in a commercial peat-based germination mix (13%) and in a self-prepared, locally popular substrate (22%) that contained sphagnum peat: perlite: calcined clay: sand (2: 2: 1: 1 by vol). Seed germination of silver buffaloberry varied from 42 to 54% and was not different among the three substrates. When substrates are kept consistently moist, a calcined-clay substrate can improve germination of roundleaf buffaloberry, but not silver buffaloberry.


2013 ◽  
Vol 85 (12) ◽  
pp. 2161-2174 ◽  
Author(s):  
Guadalupe de la Rosa ◽  
Martha Laura López-Moreno ◽  
David de Haro ◽  
Cristian E. Botez ◽  
José R. Peralta-Videa ◽  
...  

Past reports indicate that some nanoparticles (NPs) affect seed germination; however, the biotransformation of metal NPs is still not well understood. This study investigated the toxicity on seed germination/root elongation and the uptake of ZnO NPs and Zn2+ in alfalfa (Medicago sativa), cucumber (Cucumis sativus), and tomato (Solanum lycopersicum) seedlings. Seeds were treated with ZnO NPs at 0&ndash;1600 mg L&ndash;1 as well as 0&ndash;250 mg L&ndash;1 Zn2+ for comparison purposes. Results showed that at 1600 mg L&ndash;1 ZnO NPs, germination in cucumber increased by 10 %, and alfalfa and tomato germination were reduced by 40 and 20 %, respectively. At 250 mg Zn2+ L&ndash;1, only tomato germination was reduced with respect to controls. The highest Zn content was of 4700 and 3500 mg kg&ndash;1 dry weight (DW), for alfalfa seedlings germinated in 1600 mg L&ndash;1 ZnO NPs and 250 mg L&ndash;1 Zn2+, respectively. Bulk X-ray absorption spectroscopy (XAS) results indicated that ZnO NPs were probably biotransformed by plants. The edge energy positions of NP-treated samples were at the same position as Zn(NO3)2, which indicated that Zn in all plant species was as Zn(II).


Sign in / Sign up

Export Citation Format

Share Document