scholarly journals EANM position paper on article 56 of the Council Directive 2013/59/Euratom (basic safety standards) for nuclear medicine therapy

Author(s):  
Mark Konijnenberg ◽  
Ken Herrmann ◽  
Carsten Kobe ◽  
Frederik Verburg ◽  
Cecilia Hindorf ◽  
...  

Executive Summary The EC Directive 2013/59/Euratom states in article 56 that exposures of target volumes in nuclear medicine treatments shall be individually planned and their delivery appropriately verified. The Directive also mentions that medical physics experts should always be appropriately involved in those treatments. Although it is obvious that, in nuclear medicine practice, every nuclear medicine physician and physicist should follow national rules and legislation, the EANM considered it necessary to provide guidance on how to interpret the Directive statements for nuclear medicine treatments. For this purpose, the EANM proposes to distinguish three levels in compliance to the optimization principle in the directive, inspired by the indication of levels in prescribing, recording and reporting of absorbed doses after radiotherapy defined by the International Commission on Radiation Units and Measurements (ICRU): Most nuclear medicine treatments currently applied in Europe are standardized. The minimum requirement for those treatments is ICRU level 1 (“activity-based prescription and patient-averaged dosimetry”), which is defined by administering the activity within 10% of the intended activity, typically according to the package insert or to the respective EANM guidelines, followed by verification of the therapy delivery, if applicable. Non-standardized treatments are essentially those in developmental phase or approved radiopharmaceuticals being used off-label with significantly (> 25% more than in the label) higher activities. These treatments should comply with ICRU level 2 (“activity-based prescription and patient-specific dosimetry”), which implies recording and reporting of the absorbed dose to organs at risk and optionally the absorbed dose to treatment regions. The EANM strongly encourages to foster research that eventually leads to treatment planning according to ICRU level 3 (“dosimetry-guided patient-specific prescription and verification”), whenever possible and relevant. Evidence for superiority of therapy prescription on basis of patient-specific dosimetry has not been obtained. However, the authors believe that a better understanding of therapy dosimetry, i.e. how much and where the energy is delivered, and radiobiology, i.e. radiation-related processes in tissues, are keys to the long-term improvement of our treatments.

2019 ◽  
Vol 24 ◽  
pp. 226
Author(s):  
A. Papadopoulos ◽  
D. Dristiliaris ◽  
S. Tsiouris ◽  
A. Fotopoulos ◽  
J. Kalef-Ezra

A radioisotope therapeutic unit (RTU) for the treatment of patients with radiopharmaceuticals was designed and set in operation by the Ioannina University Hospital Medical Physics and Nuclear Medicine Departments. A number of parameters and procedures have been taken into account during the design stage to combine high quality medical services with minimum unjustified radiation exposures. Two pre-existing wards were modified to therapy / isolation wards by the addition of structural shielding made of concrete or/and iron and lead plates. Similar modifications were carried out in some of the remaining rooms of the RTU, such as the corresponding hot-lab and the storage-to-decay rooms. A network of GM detectors was installed for continuous monitoring of radiation levels at various locations. Among the first one hundred patients treated at the Unit, 80 had differentiated cancer and 14 had hyperthyroidism and were treated with 131I of activity ranging between 0.74 and 7.4 GBq. The maximum H*(10) rate at 1.0 m distance from the patient’s body was one of the criteria for patient release and was set on patient-specific terms. The adequacy of the RTU design and the employed operational policies were verified in practice. In conclusion, the RTU meets successfully the predicted needs.


Author(s):  
S. J. Adelstein ◽  
A. J. Green ◽  
R. W. Howell ◽  
J. L. Humm ◽  
P. K. Leichner ◽  
...  

A number of reasons have led to a reappraisal of dose specification for nuclear medicine. These include an appreciation of non-uniformities in the distribution of radioactivity in the body, at all levels, for even the most common diagnostic and therapeutic agents; an increasing need to deal with the complexities of varying dose rates; the imperative to provide individual rather than standardised dose estimates as targeted radionuclide therapy becomes more sophisticated; as well as improvements in technology. This Report deals first with biological considerations that inform the rational use of radionuclide dosimetry. Radiobiological factors in the selection of radionuclides and tumour and normal-tissue dose-responses are discussed. Then, the MIRD (medical internal radiation dose) approach to nuclear medical dosimetry, a robust method that has proven its clinical utility, is described. Following on is an elaboration of non-uniform distributions of radioactivity and of varying dose rates. Lastly, the Report deals with techniques and procedures for measuring time variant activity distributions, image fusion, patient specific dose computations, smallscale dosimetry, and the comparison of calculated and measured doses.


2016 ◽  
Vol 17 (2) ◽  
pp. 134-137
Author(s):  
Kamila Afroj Quadir ◽  
Brian Zimmermann ◽  
Md Nahid Hossain ◽  
Md Nurul Islam ◽  
Ferdoushi Begum ◽  
...  

The accuracy of patient specific dosimetry is correlated with measured organ activity by gamma camera and SPECT system. The assessment of the radiation-absorbed dose by patients undergoing nuclear medicine investigation requires accurate measurement of organ activity, biokinetics data, as well as physical data. Activities were estimated by using Ba-133 phantom with both planar and SPECT systems. The objective of the study was to measure the activities of Ba-133 from gamma camera images using both planar and SPECT studies and compare the reference values with the dose calibrator values to quantify the actual activity with gamma camera. Four Ba-133 sources of different volume and activity 379, 950, 1219 and 1150 KBq are measured by using Veenstra Instrument VDC 404 Dose Calibrator. The second smallest source was used to determine the calibration factor. Acquisition, corrections, reconstruction, quantification and measuring activity from both planar and SPECT imaging were done with all Ba-133 sources in air. The activities of the Ba-133 sources were also measured using I-131 settings of the dose calibrator. The measurement of the second smallest source was used to obtain the calibration factor. This calibration factor was used to convert the planer and SPECT image count of all the sources into activities. In case of both planar and SPECT gamma camera, the measurements showed good correlations and all the values varied within ±15%. Planer and SPECT gamma camera image counts can be used to calculate activity in the organ. This information can play a very significant role in evaluating image based patient specific dosimetry in radionuclide therapy.Bangladesh J. Nuclear Med. 17(2): 134-137, July 2014


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Su Bin Kim ◽  
In Ho Song ◽  
Yoo Sung Song ◽  
Byung Chul Lee ◽  
Arun Gupta ◽  
...  

Abstract[68Ga]PSMA-11 is a prostate-specific membrane antigen (PSMA)-targeting radiopharmaceutical for diagnostic PET imaging. Its application can be extended to targeted radionuclide therapy (TRT). In this study, we characterize the biodistribution and pharmacokinetics of [68Ga]PSMA-11 in PSMA-positive and negative (22Rv1 and PC3, respectively) tumor-bearing mice and subsequently estimated its internal radiation dosimetry via voxel-level dosimetry using a dedicated Monte Carlo simulation to evaluate the absorbed dose in the tumor directly. Consequently, this approach overcomes the drawbacks of the conventional organ-level (or phantom-based) method. The kidneys and urinary bladder both showed substantial accumulation of [68Ga]PSMA-11 without exhibiting a washout phase during the study. For the tumor, a peak concentration of 4.5 ± 0.7 %ID/g occurred 90 min after [68Ga]PSMA-11 injection. The voxel- and organ-level methods both determined that the highest absorbed dose occurred in the kidneys (0.209 ± 0.005 Gy/MBq and 0.492 ± 0.059 Gy/MBq, respectively). Using voxel-level dosimetry, the absorbed dose in the tumor was estimated as 0.024 ± 0.003 Gy/MBq. The biodistribution and pharmacokinetics of [68Ga]PSMA-11 in various organs of subcutaneous prostate cancer xenograft model mice were consistent with reported data for prostate cancer patients. Therefore, our data supports the use of voxel-level dosimetry in TRT to deliver personalized dosimetry considering patient-specific heterogeneous tissue compositions and activity distributions.


Author(s):  
An Aerts ◽  
Uta Eberlein ◽  
Sören Holm ◽  
Roland Hustinx ◽  
Mark Konijnenberg ◽  
...  

Executive SummaryWith an increasing variety of radiopharmaceuticals for diagnostic or therapeutic nuclear medicine as valuable diagnostic or treatment option, radiobiology plays an important role in supporting optimizations. This comprises particularly safety and efficacy of radionuclide therapies, specifically tailored to each patient. As absorbed dose rates and absorbed dose distributions in space and time are very different between external irradiation and systemic radionuclide exposure, distinct radiation-induced biological responses are expected in nuclear medicine, which need to be explored. This calls for a dedicated nuclear medicine radiobiology. Radiobiology findings and absorbed dose measurements will enable an improved estimation and prediction of efficacy and adverse effects. Moreover, a better understanding on the fundamental biological mechanisms underlying tumor and normal tissue responses will help to identify predictive and prognostic biomarkers as well as biomarkers for treatment follow-up. In addition, radiobiology can form the basis for the development of radiosensitizing strategies and radioprotectant agents. Thus, EANM believes that, beyond in vitro and preclinical evaluations, radiobiology will bring important added value to clinical studies and to clinical teams. Therefore, EANM strongly supports active collaboration between radiochemists, radiopharmacists, radiobiologists, medical physicists, and physicians to foster research toward precision nuclear medicine.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Benjamin J. Van ◽  
Yuni K. Dewaraja ◽  
Mamadou L. Sangogo ◽  
Justin K. Mikell

Abstract Introduction Much progress has been made in implementing selective internal radiation therapy (SIRT) as a viable treatment option for hepatic malignancies. However, there is still much need for improved options for calculating the amount of activity to be administered. To make advances towards this goal, this study examines the relationship between predicted biological outcomes of liver tumors via tumor control probabilities (TCP) and parenchyma via normal tissue complication probabilities (NTCP) given variations in absorbed dose prescription methodologies. Methods Thirty-nine glass microsphere treatments in 35 patients with hepatocellular carcinoma or metastatic liver disease were analyzed using 99mTc-MAA SPECT/CT and 90Y PET/CT scans. Predicted biological outcomes corresponding to the single compartment (standard) model and multi-compartment (partition) dosimetry model were compared using our previously derived TCP dose-response curves over a range of 80–150 Gy prescribed absorbed dose to the perfused volume, recommended in the package insert for glass microspheres. Retrospective planning dosimetry was performed on the MAA SPECT/CT; changes from the planned infused activity due to selection of absorbed dose level and dosimetry model (standard or partition) were used to scale absorbed doses reported from 90Y PET/CT including liver parenchyma and lesions (N = 120) > 2 ml. A parameterized charting system was developed across all potential prescription options to enable a clear relationship between standard prescription vs. the partition model-based prescription. Using a previously proposed NTCP model, the change in prescribed dose from a standard model prescription of 120 Gy to the perfused volume to a 15% NTCP prescription to the normal liver was explored. Results Average TCP predictions for the partition model compared with the standard model varied from a 13% decrease to a 32% increase when the prescribed dose was varied across the range of 80–150 Gy. In the parametrized chart comparing absorbed dose prescription ranges across the standard model and partition models, a line of equivalent absorbed dose to a tumor was identified. TCP predictions on a per lesion basis varied between a 26% decrease and a 81% increase for the most commonly chosen prescription options when comparing the partition model with the standard model. NTCP model was only applicable to a subset of patients because of the small volume fraction of the liver that was targeted in most cases. Conclusion Our retrospective analysis of patient imaging data shows that the choice of prescribed dose and which model to prescribe potentially contribute to a wide variation in average tumor efficacy. Biological response data should be included as one factor when looking to improve patient care in the clinic. The use of parameterized charting, such as presented here, will help direct physicians when transitioning to newer prescription methods.


2002 ◽  
Vol 45 (spe) ◽  
pp. 115-118
Author(s):  
Nicole Colas-Linhart

In nuclear medicine, radiation absorbed dose estimates calculated by standard models at the whole body or organ are very low. At cellular level, however, the heterogeneity of radionuclide distributions of radiation dose patterns may be significant. We present here absorbed doses at cellular level and evaluate their possible impact on the usually assumed risk/benefit relationships in nuclear medicine studies. The absorbed dose values calculated are surprisingly high, and are difficult to interpret. In the present study, we show calculated doses at the cellular level and discuss possible biological consequences, for two radiopharmaceuticals labelled with technetium-99m: human serum albumin microspheres used for pulmonary scintigrapies and HMPAO used to labelled leukocytes.


Sign in / Sign up

Export Citation Format

Share Document