scholarly journals Conditioning treatment with CD27 Ab enhances expansion and antitumor activity of adoptively transferred T cells in mice

Author(s):  
Anna Wasiuk ◽  
Jeff Weidlick ◽  
Crystal Sisson ◽  
Jenifer Widger ◽  
Andrea Crocker ◽  
...  

AbstractCyclophosphamide plus fludarabine (C/F) are currently used to improve the expansion and effectiveness of adoptive cell therapy (ACT). However, these chemotherapeutics cause pan-leukopenia and adverse events, suggesting that safer and more effective conditioning treatments are needed to improve ACT outcomes. Previously, we reported that varlilumab, a CD27-targeting antibody, mediates Treg -preferential T cell depletion, CD8-T cell dominant costimulation, and systemic immune activation in hCD27 transgenic mice and cancer patients. We reasoned that the activities induced by varlilumab may provide an effective conditioning regimen for ACT. Varlilumab pretreatment of hCD27+/+mCD27 − /− mice resulted in prominent proliferation of transferred T cells isolated from wild-type mice. These studies uncovered a critical role for CD27 signaling for the expansion of transferred T cells, as transfer of T cells from CD27 deficient mice or treatment with a CD70 blocking antibody greatly reduced their proliferation. In this model, varlilumab depletes endogenous hCD27+/+ T cells and blocks their subsequent access to CD70, allowing for more CD70 costimulation available to the mCD27+/+ transferred T cells. CD27-targeted depletion led to a greater expansion of transferred T cells compared to C/F conditioning and resulted in longer median survival and more cures than C/F conditioning in the E.G7 tumor model receiving OT-I cell therapy. We propose that translation of this work could be achieved through engineering of T cells for ACT to abrogate varlilumab binding but preserve CD70 ligation. Thus, varlilumab could be an option to chemotherapy as a conditioning regimen for ACT.

Author(s):  
Runzi Sun ◽  
Yixian Wu ◽  
Huijun Zhou ◽  
Yanshi Wu ◽  
Zhongzhou Yang ◽  
...  

Sustaining efficacious T cell-mediated antitumor immune responses in the tumor tissues is the key to the success of cancer immunotherapy. Current strategies leverage altering the signals T cells sense in the tumor microenvironment (TME). Checkpoint inhibitor-based approaches block inhibitory signals such as PD-1 whereas cytokine-based therapies increase the level of immune-stimulatory cytokines such as IL-2. Besides extrinsic signals, the genetic circuit within T cells also participates in determining the nature and trajectory of antitumor immune responses. Here, we showed that efficacy of the IL33-based tumor immunotherapy was greatly enhanced in mice with T cell-specific Eomes deficiency. Mechanistically, we demonstrated that Eomes deficient mice had diminished proportions of exhausted/dysfunctional CD8+ T cells but increased percentages of tissue resident and stem-like CD8+ T cells in the TME. In addition, the IFNγ+TCF1+ CD8+ T cell subset was markedly increased in the Eomes deficient mice. We further demonstrated that Eomes bound directly to the transcription regulatory regions of exhaustion and tissue residency genes. In contrast to its role in inhibiting T cell immune responses at the tumor site, Eomes promoted generation of central memory T cells in the peripheral lymphoid system and memory recall responses against tumor growth at a distal tissue site. Finally, we showed that Eomes deficiency in T cells also resulted in increased efficacy of PD-1-blockade tumor immunotherapy. In all, our study indicates that Eomes plays a critical role in restricting prolonged T cell-mediated antitumor immune responses in the TME whereas promoting adaptive immunity in peripheral lymphoid organs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ratchapong Netsrithong ◽  
Methichit Wattanapanitch

Adoptive cell therapy (ACT) using chimeric antigen receptor (CAR) T cells holds impressive clinical outcomes especially in patients who are refractory to other kinds of therapy. However, many challenges hinder its clinical applications. For example, patients who undergo chemotherapy usually have an insufficient number of autologous T cells due to lymphopenia. Long-term ex vivo expansion can result in T cell exhaustion, which reduces the effector function. There is also a batch-to-batch variation during the manufacturing process, making it difficult to standardize and validate the cell products. In addition, the process is labor-intensive and costly. Generation of universal off-the-shelf CAR T cells, which can be broadly given to any patient, prepared in advance and ready to use, would be ideal and more cost-effective. Human induced pluripotent stem cells (iPSCs) provide a renewable source of cells that can be genetically engineered and differentiated into immune cells with enhanced anti-tumor cytotoxicity. This review describes basic knowledge of T cell biology, applications in ACT, the use of iPSCs as a new source of T cells and current differentiation strategies used to generate T cells as well as recent advances in genome engineering to produce next-generation off-the-shelf T cells with improved effector functions. We also discuss challenges in the field and future perspectives toward the final universal off-the-shelf immunotherapeutic products.


Author(s):  
Patrick A. Ott ◽  
Gianpietro Dotti ◽  
Cassian Yee ◽  
Stephanie L. Goff

Adoptive T-cell therapy using tumor-infiltrating lymphocytes (TILs) has demonstrated long-lasting antitumor activity in select patients with advanced melanoma. Cancer vaccines have been used for many decades and have shown some promise but overall relatively modest clinical activity across cancers. Technological advances in genome sequencing capabilities and T-cell engineering have had substantial impact on both adoptive cell therapy and the cancer vaccine field. The ability to identify neoantigens—a class of tumor antigens that is truly tumor specific and encoded by tumor mutations through rapid and relatively inexpensive next-generation sequencing—has already demonstrated the critical importance of these antigens as targets of antitumor-specific T-cell responses in the context of immune checkpoint blockade and other immunotherapies. Therapeutically targeting these antigens with either adoptive T-cell therapy or vaccine approaches has demonstrated early promise in the clinic in patients with advanced solid tumors. Chimeric antigen receptor (CAR) T cells, which are engineered by fusing an antigen-specific, single-chain antibody (scFv) with signaling molecules of the T-cell receptor (TCR)/CD3 complex creating an antibody-like structure on T cells that recognizes antigens independently of major histocompatibility complex (MHC) molecules, have demonstrated remarkable clinical activity in patients with advanced B-cell malignancies, leading to several approvals by the U.S. Food and Drug Administration (FDA).


Gut ◽  
2020 ◽  
Vol 69 (5) ◽  
pp. 942-952 ◽  
Author(s):  
Jennie N Clough ◽  
Omer S Omer ◽  
Scott Tasker ◽  
Graham M Lord ◽  
Peter M Irving

The prevalence of IBD is rising in the Western world. Despite an increasing repertoire of therapeutic targets, a significant proportion of patients suffer chronic morbidity. Studies in mice and humans have highlighted the critical role of regulatory T cells in immune homeostasis, with defects in number and suppressive function of regulatory T cells seen in patients with Crohn’s disease. We review the function of regulatory T cells and the pathways by which they exert immune tolerance in the intestinal mucosa. We explore the principles and challenges of manufacturing a cell therapy, and discuss clinical trial evidence to date for their safety and efficacy in human disease, with particular focus on the development of a regulatory T-cell therapy for Crohn’s disease.


Blood ◽  
2013 ◽  
Vol 121 (4) ◽  
pp. 573-584 ◽  
Author(s):  
Nicoletta Cieri ◽  
Barbara Camisa ◽  
Fabienne Cocchiarella ◽  
Mattia Forcato ◽  
Giacomo Oliveira ◽  
...  

Abstract Long-living memory stem T cells (TSCM) with the ability to self-renew and the plasticity to differentiate into potent effectors could be valuable weapons in adoptive T-cell therapy against cancer. Nonetheless, procedures to specifically target this T-cell population remain elusive. Here, we show that it is possible to differentiate in vitro, expand, and gene modify in clinically compliant conditions CD8+ TSCM lymphocytes starting from naive precursors. Requirements for the generation of this T-cell subset, described as CD62L+CCR7+CD45RA+CD45R0+IL-7Rα+CD95+, are CD3/CD28 engagement and culture with IL-7 and IL-15. Accordingly, TSCM accumulates early after hematopoietic stem cell transplantation. The gene expression signature and functional phenotype define this population as a distinct memory T-lymphocyte subset, intermediate between naive and central memory cells. When transplanted in immunodeficient mice, gene-modified naive-derived TSCM prove superior to other memory lymphocytes for the ability to expand and differentiate into effectors able to mediate a potent xenogeneic GVHD. Furthermore, gene-modified TSCM are the only T-cell subset able to expand and mediate GVHD on serial transplantation, suggesting self-renewal capacity in a clinically relevant setting. These findings provide novel insights into the origin and requirements for TSCM generation and pave the way for their clinical rapid exploitation in adoptive cell therapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alejandrina Hernández-López ◽  
Mario A. Téllez-González ◽  
Paul Mondragón-Terán ◽  
Angélica Meneses-Acosta

Cancer is among the leading causes of death worldwide. Therefore, improving cancer therapeutic strategies using novel alternatives is a top priority on the contemporary scientific agenda. An example of such strategies is immunotherapy, which is based on teaching the immune system to recognize, attack, and kill malignant cancer cells. Several types of immunotherapies are currently used to treat cancer, including adoptive cell therapy (ACT). Chimeric Antigen Receptors therapy (CAR therapy) is a kind of ATC where autologous T cells are genetically engineered to express CARs (CAR-T cells) to specifically kill the tumor cells. CAR-T cell therapy is an opportunity to treat patients that have not responded to other first-line cancer treatments. Nowadays, this type of therapy still has many challenges to overcome to be considered as a first-line clinical treatment. This emerging technology is still classified as an advanced therapy from the pharmaceutical point of view, hence, for it to be applied it must firstly meet certain requirements demanded by the authority. For this reason, the aim of this review is to present a global vision of different immunotherapies and focus on CAR-T cell technology analyzing its elements, its history, and its challenges. Furthermore, analyzing the opportunity areas for CAR-T technology to become an affordable treatment modality taking the basic, clinical, and practical aspects into consideration.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15021-e15021
Author(s):  
Zishan Zhou ◽  
Yue Pu ◽  
Shanshan Xiao ◽  
Ping Wang ◽  
Yang Yu ◽  
...  

e15021 Background: T-cell receptor (TCR)-engineered T cells are a novel option for adoptive cell therapy used for the treatment of several advanced forms of cancers. Unlike many shared tumor-specific antigens, such as melanoma-associated antigen (MAGE)-A3, MAGE-A4, and New York esophageal squamous cell carcinoma (NY-ESO)-1, neoantigen has garnered much attention as a potential precision immunotherapy. Personalized neoantigen selection serves a broader and more precision future for cancer patients. Methods: Dendritic cells (DCs) derived from adherent monocytes were pulsed with mixed peptides during the maturation phase. CD8+ cells positively selected from PBMCs were incubated with washed DCs. After 21day culture in X-VIVO medium with IL-7 and IL-15, cells were harvested and stimulated with peptides for 6 h. CD137+ cells were sorted by flow cytometric and immediately processed using the 10x Genomic Chromium Single Cell 5' Library & Gel Bead Kit and Chromium Single Cell V(D)J Enrichment Kit. The T-cell TCR libraries were constructed and sequenced on the Illumina HiSeq X Ten platform. The sequencing reads were aligned to the hg38 human reference genome and analyzed using the 10x Genomics Cell Ranger pipeline. The paired TCR α and β chain sequence of each cell was demonstrated with V(D)J analysis. TCR-T cells were constructed using the information of neoantigen specific TCR, and infused to patients. Results: Two patients were treated with the personalized TCR-T treatment. At the first stage, specialized immune cells were harvested and proceeded to single-cell TCR profiling. Then, the single cell sequencing of the first patient's sample revealed the top five neoantigen specific TCR CDR3 clonotypes with the proportion of 25%, 7.67%, 4.81%, 2.79%, and 2.54%, respectively. Similarly, the other patient had the top five TCR CDR3 sequenced with the proportion of 13.38%, 7.04%, 4.21%, 2.83%, and 1.94%, respectively. The results demonstrated that both patients had one or two dominant CDR3 clonotypes, which might reflect the strength of neoantigen in vivo. At the third stage, TCR-T cells were constructed, and infused to the patients. The clinical outcome will be evaluated in the near future. Conclusions: We have generated a pipeline for a highly personalized cancer therapy using TCR-engineered T cells. Although some questions remain to be answered, this novel approach may result in better clinical responses in future treatment.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 381-381
Author(s):  
Tetsuya Nishimoto ◽  
Takashi Satoh ◽  
Yasuo Ikeda ◽  
Masataka Kuwana

Abstract Abstract 381 Immune thrombocytopenic purpura (ITP) is a T cell-mediated autoimmune disorder, in which IgG autoantibodies to platelet surface glycoproteins promote platelet clearance in the reticuloendthelial system. Since CD4+CD25+ regulatory T cells (Tregs) are known to play a crucial role in the maintenance of immune homeostasis to self-antigens, it has been believed that Treg dysfunction contributes to the development of a various forms of human autoimmune disorders. Several lines of recent evidence have shown that Tregs are decreased in number and are functionally impaired in patients with ITP. However, it remains unclear how Treg alteration is involved in the pathophysiology of ITP. Recently, we have found that a group of Treg-deficient mice develop autoantibody-mediated thrombocytopenia. For preparation of Treg-deficient mice, Treg-depleted T cells were prepared from BALB/c splenocytes by serial purification steps consisting of a positive selection of CD4+ T cells and a negative selection of CD25+ cells using magnetic bead-based cell sorting, and were transferred into syngeneic T cell-deficient nude mice via tail vein. Treg-depleted T cell fraction transferred contained >99% CD4+CD25− cells, and was confirmed to lack expression of Foxp3, a typical Treg marker. Three weeks after transfer, approximately one third of the recipient mice spontaneously developed thrombocytopenia, which sustained for > 20 weeks. Thrombocytopenic mice represented elevated platelet-associated IgG and increased proportion of reticulated platelets, but non-thrombocytopenic mice did not. In addition, platelets eluates and culture supernatants of splenocytes prepared from thrombocytopenic mice contained IgG antibodies capable of binding to intact platelets, which were not detected in non-thrombocytopenic mice. The presence of anti-platelet antibodies and increased platelet turnover observed in thrombocytopenic Treg-deficient mice are analogous to ITP patients. Treg-deficient mice prepared by transfer of a less number of Treg-depleted T cells resulted in reduced prevalence of thrombocytopenia, suggesting that onset of thrombocytopenia depends on the number of conventional T cells transferred. Treg-deficient mice are known to frequently develop autoimmune gastritis, another autoimmune disease mediated by IgG anti-parietal cell antibodies, but anti-parietal cell antibodies were almost equally detected in plasma from thrombocytopenic and non-thrombocytopenic mice (70% versus 60%). Transplantation of Tregs together with Treg-depleted T cells completely prevented the onset of thrombocytopenia, but Treg transplantation was not effective as a treatment once thrombocytopenia occurred. To further investigate how Tregs exert the regulatory function, Treg-depleted T cells and Tregs were simultaneously transferred in the presence of antibodies that blocked engagement of cytotoxic T lymphocyte-associated antigen 4 (CTLA4). This treatment cancelled Treg function and resulted in development of thrombocytopenia in recipient nude mice, while mock treatment with control antibodies had no effect. In summary, these results together indicate that CD4+CD25+Foxp3+ Tregs play a critical role in preventing the development of murine autoantibody-mediated thrombocytopenia, in part, through CTLA4 engagement. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 354-354
Author(s):  
Marcus O. Butler ◽  
Sascha Ansén ◽  
Makito Tanaka ◽  
Osamu Imataki ◽  
Alla Berezovskaya ◽  
...  

Abstract Abstract 354 Adoptive cell therapy utilizes unique mechanisms of action to prevent the development of infections in immunocompromised patients and treat chemotherapy resistant malignancies. In adoptive cell therapy, the major effector cells appear to be CD8+ T cells, since they are armed with antigen-specific effector functions, i.e. cytotoxicity and cytokine secretion. However, the roles of antigen-specific CD4+ T cells in T cell immunity are also critical. In immunocompromised patients adoptively transferred with CMV-specific CD8+ T cells, long-term in vivo persistence was achieved only when CMV-specific CD4+ T cells were also present in vivo. Recently, adoptive transfer of a NY-ESO-1 specific CD4+ T cell clone was reported to induce a complete response in a patient with metastatic melanoma. These results suggest that adoptive cell therapy for infectious diseases and cancer can be improved by infusing both antigen-specific CD4+ helper T cells as well as CD8+ CTL. Unfortunately, however, few versatile systems are available for producing large numbers of antigen-specific human CD4+ T cells for the purpose of adoptive therapy. K562 is a human erythroleukemic cell line, which lacks the expression of HLA class I and II, invariant chain (Ii), and HLA-DM, but does express adhesion molecules such as ICAM-1 and LFA-3. Given this unique immunologic phenotype, K562 has served as a useful tool in clinical cancer immunotherapy trials. Previously, we reported the generation of a K562-based artificial APC (aAPC), which expresses HLA-A2, CD80, and CD83. aAPC/A2 can uniquely support the priming and prolonged expansion of large numbers of antigen-specific CD8+ CTL which display a central/effector memory phenotype, possess potent effector function, and can be maintained in vitro without any feeder cells or cloning. aAPC/A2 is equipped with constitutive proteasome and inducible immunoproteasome machinery and can naturally process and present CD8+ T cell peptides via transduced A2 molecules. We have successfully generated clinical grade aAPC/A2 under cGMP conditions and conducted a clinical trial where patient with advanced melanoma are infused with large numbers of MART1-specific CTL generated ex vivo using aAPC/A2, IL-2 and IL-15. Based on our experience with aAPC/A2 and CD8+ T cells, we have generated a series of novel aAPC (aAPC/DR1, DR3, DR4, DR7, DR10, DR11, DR13, and DR15) to stimulate HLA-DR-restricted antigen-specific CD4+ T cells. K562 has been engineered to express HLA-DRα and β chains as a single HLA allele in conjunction with Ii, HLA-DMα and β chains, CD80 and CD83. CD83 delivers a CD80-dependent T cell stimulatory signal that allows T cells to be long-lived. Following the transduction of Ii, CLIP (class II invariant chain-associated peptide) appeared on the cell surface of aAPC. Furthermore, CLIP expression on aAPC was almost completely abrogated by the introduction of HLA-DM. This result is in accordance with previous studies showing that HLA-DM catalyzes the removal of CLIP from DR thus enabling exogenous peptides to bind to empty DR molecules in late endosomes. In addition to its endogenous pinocytic activity, aAPC was made capable of Fcγ receptor-mediated endocytosis by transduction of CD64. Comparison of naïve aAPC and CD64-transduced aAPC confirmed that Fcγ receptor-mediated endocytosis is more efficient than pinocytosis to take up soluble protein and process and present DR-restricted peptides to CD4+ T cells. Using these standardized and renewable aAPC, we determined novel viral protein-derived DR-restricted CD4+ T cell epitopes and expanded large numbers of viral antigen-specific CD4+ T cells without growing bystander Foxp3+ regulatory T cells. Without any feeder cells or cloning, expansion of CD4+ T cells using aAPC and low dose IL-2 and IL-15 was sustainable up to 150 days. Immunophenotypic analysis using HLA-DR tetramers and specific mAbs revealed that expanded CD4+ T cells were CD45RA−, CD45RO+, CD62L+-, demonstrating a central/effector memory phenotype. Furthermore, intracellular cytokine analysis showed that expanded DR-restricted viral-specific CD4+ T cells secreted IL-2 and IFN-γ but much less IL-4, displaying a Th1-biased phenotype. Taken all together, these results suggest that K562-based aAPC may serve as a translatable platform to generate both antigen-specific CD4+ helper T cells and CD8+ CTL. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 2162-2162
Author(s):  
Martin Szyska ◽  
Stefanie Herda ◽  
Stefanie Althoff ◽  
Andreas Heimann ◽  
Tra My Dang ◽  
...  

Abstract Adoptive T cell therapy (ATT) is a promising option for the treatment of solid cancers. However, various defense mechanisms acquired by the tumor during evolution prevent transferred T cells (TC) to unfold their full potential. A combination of ATT with accessory therapeutic approaches including checkpoint inhibition and targeted therapy could lift TC inhibition and efficiently shift the immune balance towards tumor rejection. An in-vivo analysis of the impact of combination strategies on the outcome of ATT would greatly enhance the search for an optimal accessory to ATT therapy. We generated the transgenic mouse line BLITC (bioluminescence imaging of T cells) expressing an NFAT (nuclear factor of activated T cell)-dependent Click-beetle luciferase (Na et. al, 2010) and a constitutive Renilla Luciferase, allowing us to monitor migration and activation of transferred TCs in vivo. In order to analyze crucial ATT parameters in a clinically relevant tumor model, BLITC mice were crossed to the two HY-TCR transgenic mice Marilyn (CD4: H-2Ab-Dby) and MataHari (CD8: H-2Db-Uty) to generate TCs that could be monitored for in-vivo infiltration, local activation and rejection of established (> 0,5 cm x 0,5 cm / ≥10 days growth) H-Y expressing MB49 tumors. In order to better reflect the clinical situation, we lymphodepleted tumor-bearing immunocompetent albino B6 mice with fludarabine (FLu) and/or cyclophosphamide (CTX) prior to ATT. Transferred TCs were FACSorted and injected after an optional culture expansion phase. As shown before for freshly injected tumor cells (Perez-Diez, 2007), we observed a superior response of tumor-antigen specific CD4+ TCs compared to CD8+ TCs against established tumors. Whereas 5*106 CD8+ T cells hardly attenuated tumor growth, even as few as 5000 H-Y TCR-transgenic CD4+ T cells rejected tumors in most mice, depending on the lymphodepleting treatment (Figure A - remission rates in parentheses). Tumor infiltration and activation of adoptively transferred TCs was monitored in-vivo by the respective bioluminescent reporters. Around day 4 and 6, CD4+ TCs migrated from tumor-draining lymph nodes into the tumor environment and persisted until rejection. Interestingly, activation of CD4+ TCs was only transient (between days 4 and 7) in all mice, independent of therapy outcome (in Figure B shown for refractory tumor). Whereas loss of activation signal during remission was correlated with tumor clearance and decline of effector function, in refractory tumors it suggests a rapid inactivation of infiltrating TCs by the tumor microenvironment. Our data indicate that the failure of tumor rejection is not caused by impaired peripheral expansion or tumor homing but rather by inhibition of TC effector function. Responsible mechanisms and counter-acting therapeutic interventions are the focus of ongoing studies. In summary, the BLITC reporter system facilitates analysis of therapeutic parameters for ATT in a well-established solid tumor model. Using BLITC mice for transduction with TCR or CAR expression cassettes could allow rapid monitoring of on-target as well as undesired off-target effects in virtually any tumor setting. Future experiments will focus on the beneficial effects of combination treatments on the activation of adoptively transferred TCs. Figure. Figure. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document