scholarly journals Genome protection: histone H4 and beyond

2020 ◽  
Vol 66 (5) ◽  
pp. 945-950
Author(s):  
Kundan Kumar ◽  
Romila Moirangthem ◽  
Rupinder Kaur

Abstract Histone proteins regulate cellular factors’ accessibility to DNA, and histone dosage has previously been linked with DNA damage susceptibility and efficiency of DNA repair pathways. Surplus histones are known to impede the DNA repair process by interfering with the homologous recombination-mediated DNA repair in Saccharomyces cerevisiae. Here, we discuss the recent finding of association of methyl methanesulfonate (MMS) resistance with the reduced histone H4 gene dosage in the pathogenic yeast Candida glabrata. We have earlier shown that while the low histone H3 gene dosage led to MMS susceptibility, the lack of two H4-encoding ORFs, CgHHF1 and CgHHF2, led to resistance to MMS-induced DNA damage. This resistance was linked with a higher rate of homologous recombination (HR). Taking these findings further, we review the interactome analysis of histones H3 and H4 in C. glabrata. We also report that the arginine residue present at the 95th position in the C-terminal tail of histone H4 protein is required for complementation of the MMS resistance in the Cghhf1Δhhf2Δ mutant, thereby pointing out a probable role of this residue in association with HR factors. Additionally, we present evidence that reduction in H4 protein levels may constitute an important part of varied stress responses in C. glabrata. Altogether, we present an overview of histone H4 dosage, HR-mediated repair of damaged DNA and stress resistance in this opportunistic human fungal pathogen.

2017 ◽  
Vol 24 (4) ◽  
pp. 580-587 ◽  
Author(s):  
Ben R Hawley ◽  
Wei-Ting Lu ◽  
Ania Wilczynska ◽  
Martin Bushell

Abstract Many surveillance and repair mechanisms exist to maintain the integrity of our genome. All of the pathways described to date are controlled exclusively by proteins, which through their enzymatic activities identify breaks, propagate the damage signal, recruit further protein factors and ultimately resolve the break with little to no loss of genetic information. RNA is known to have an integral role in many cellular pathways, but, until very recently, was not considered to take part in the DNA repair process. Several reports demonstrated a conserved critical role for RNA-processing enzymes and RNA molecules in DNA repair, but the biogenesis of these damage-related RNAs and their mechanisms of action remain unknown. We will explore how these new findings challenge the idea of proteins being the sole participants in the response to DNA damage and reveal a new and exciting aspect of both DNA repair and RNA biology.


Folia Medica ◽  
2018 ◽  
Vol 60 (1) ◽  
pp. 39-47 ◽  
Author(s):  
Ashish P. Shah ◽  
Chhagan N. Patel ◽  
Dipen K. Sureja ◽  
Kirtan P. Sanghavi

AbstractThe DNA repair process protects the cells from DNA damaging agent by multiple pathways. Majority of the cancer therapy cause DNA damage which leads to apoptosis. The cell has natural ability to repair this damage which ultimately leads to development of resistance of drugs. The key enzymes involved in DNA repair process are poly(ADP-ribose) (PAR) and poly(ADP-ribose) polymerases (PARP). Tumor cells repair their defective gene via defective homologues recombination (HR) in the presence of enzyme PARP. PARP inhibitors inhibit the enzyme poly(ADP-ribose) polymerases (PARPs) which lead to apoptosis of cancer cells. Current clinical data shows the role of PARP inhibitors is not restricted to BRCA mutations but also effective in HR dysfunctions related tumors. Therefore, investigation in this area could be very helpful for future therapy of cancer. This review gives detail information on the role of PARP in DNA damage repair, the role of PARP inhibitors and chemistry of currently available PARP inhibitors.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1258 ◽  
Author(s):  
Kamila Burdova ◽  
Radka Storchova ◽  
Matous Palek ◽  
Libor Macurek

Genotoxic stress triggers a combined action of DNA repair and cell cycle checkpoint pathways. Protein phosphatase 2C delta (referred to as WIP1) is involved in timely inactivation of DNA damage response by suppressing function of p53 and other targets at chromatin. Here we show that WIP1 promotes DNA repair through homologous recombination. Loss or inhibition of WIP1 delayed disappearance of the ionizing radiation-induced 53BP1 foci in S/G2 cells and promoted cell death. We identify breast cancer associated protein 1 (BRCA1) as interactor and substrate of WIP1 and demonstrate that WIP1 activity is needed for correct dynamics of BRCA1 recruitment to chromatin flanking the DNA lesion. In addition, WIP1 dephosphorylates 53BP1 at Threonine 543 that was previously implicated in mediating interaction with RIF1. Finally, we report that inhibition of WIP1 allowed accumulation of DNA damage in S/G2 cells and increased sensitivity of cancer cells to a poly-(ADP-ribose) polymerase inhibitor olaparib. We propose that inhibition of WIP1 may increase sensitivity of BRCA1-proficient cancer cells to olaparib.


mBio ◽  
2019 ◽  
Vol 10 (2) ◽  
Author(s):  
Dipon Das ◽  
Molly L. Bristol ◽  
Nathan W. Smith ◽  
Claire D. James ◽  
Xu Wang ◽  
...  

ABSTRACTHuman papillomaviruses (HPV) are double-stranded DNA viruses causative in a host of human diseases, including several cancers. Following infection, two viral proteins, E1 and E2, activate viral replication in association with cellular factors and stimulate the DNA damage response (DDR) during the replication process. E1-E2 uses homologous recombination (HR) to facilitate DNA replication, but an understanding of host factors involved in this process remains incomplete. Previously, we demonstrated that the class III deacetylase SIRT1, which can regulate HR, is recruited to E1-E2-replicating DNA and regulates the level of replication. Here, we demonstrate that SIRT1 promotes the fidelity of E1-E2 replication and that the absence of SIRT1 results in reduced recruitment of the DNA repair protein Werner helicase (WRN) to E1-E2-replicating DNA. CRISPR/Cas9 editing demonstrates that WRN, like SIRT1, regulates the quantity and fidelity of E1-E2 replication. This is the first report of WRN regulation of E1-E2 DNA replication, or a role for WRN in the HPV life cycle. In the absence of SIRT1 there is an increased acetylation and stability of WRN, but a reduced ability to interact with E1-E2-replicating DNA. We present a model in which E1-E2 replication turns on the DDR, stimulating SIRT1 deacetylation of WRN. This deacetylation promotes WRN interaction with E1-E2-replicating DNA to control the quantity and fidelity of replication. As well as offering a crucial insight into HPV replication control, this system offers a unique model for investigating the link between SIRT1 and WRN in controlling replication in mammalian cells.IMPORTANCEHPV16 is the major viral human carcinogen responsible for between 3 and 4% of all cancers worldwide. Following infection, this virus activates the DNA damage response (DDR) to promote its life cycle and recruits DDR proteins to its replicating DNA in order to facilitate homologous recombination during replication. This promotes the production of viable viral progeny. Our understanding of how HPV16 replication interacts with the DDR remains incomplete. Here, we demonstrate that the cellular deacetylase SIRT1, which is a part of the E1-E2 replication complex, regulates recruitment of the DNA repair protein WRN to the replicating DNA. We demonstrate that WRN regulates the level and fidelity of E1-E2 replication. Overall, the results suggest a mechanism by which SIRT1 deacetylation of WRN promotes its interaction with E1-E2-replicating DNA to control the levels and fidelity of that replication.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 424 ◽  
Author(s):  
Boleslaw T. Karwowski

Approximately 3 × 1017 DNA damage events take place per hour in the human body. Within clustered DNA lesions, they pose a serious problem for repair proteins, especially for iron–sulfur glycosylases (MutyH), which can recognize them by the electron-transfer process. It has been found that the presence of both 5′,8-cyclo-2′-deoxyadenosine (cdA) diastereomers in the ds-DNA structure, as part of a clustered lesion, can influence vertical radical cation distribution within the proximal part of the double helix, i.e., d[~oxoGcAoxoG~] (7,8-dihydro-8-oxo-2′-deoxyguaosine - oxodG). Here, the influence of cdA, “the simplest tandem lesion”, on the charge transfer through ds-DNA was taken into theoretical consideration at the M062x/6-31+G** level of theory in the aqueous phase. It was shown that the presence of (5′S)- or (5′R)-cdA leads to a slowdown in the hole transfer by one order of magnitude between the neighboring dG→oxodG in comparison to “native” ds-DNA. Therefore, it can be concluded that such clustered lesions can lead to defective damage recognition with a subsequent slowing down of the DNA repair process, giving rise to an increase in mutations. As a result, the unrepaired, oxodG: dA base pair prior to genetic information replication can finally result in GC → TA or AT→CG transversion. This type of mutation is commonly observed in human cancer cells. Moreover, because local multiple damage sites (LMSD) are effectively produced as a result of ionization factors, the presented data in this article might be useful in developing a new scheme of radiotherapy treatment against the background of DNA repair efficiency.


Author(s):  
Shiyou Che ◽  
Yujing Chen ◽  
Yakun Liang ◽  
Qionglin Zhang ◽  
Mark Bartlam

DNA damage is usually lethal to all organisms. Homologous recombination plays an important role in the DNA damage-repair process in prokaryotic organisms. Two pathways are responsible for homologous recombination inPseudomonas aeruginosa: the RecBCD pathway and the RecFOR pathway. RecR is an important regulator in the RecFOR homologous recombination pathway inP. aeruginosa. It forms complexes with RecF and RecO that can facilitate the loading of RecA onto ssDNA in the RecFOR pathway. Here, the crystal structure of RecR fromP. aeruginosaPAO1 (PaRecR) is reported.PaRecR crystallizes in space groupP6122, with two monomers per asymmetric unit. Analytical ultracentrifugation data show thatPaRecR forms a stable dimer, but can exist as a tetramer in solution. The crystal structure shows that dimericPaRecR forms a ring-like tetramer architectureviacrystal symmetry. The presence of a ligand in the Walker B motif of one RecR subunit suggests a putative nucleotide-binding site.


2014 ◽  
Vol 30 (10) ◽  
pp. 1135-1143 ◽  
Author(s):  
Te-Chun Hsia ◽  
Ju-Hwa Lin ◽  
Shu-Chun Hsu ◽  
Nou-Ying Tang ◽  
Hsu-Feng Lu ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253403
Author(s):  
Sarah Stahl-Rommel ◽  
David Li ◽  
Michelle Sung ◽  
Rebecca Li ◽  
Aarthi Vijayakumar ◽  
...  

As we explore beyond Earth, astronauts may be at risk for harmful DNA damage caused by ionizing radiation. Double-strand breaks are a type of DNA damage that can be repaired by two major cellular pathways: non-homologous end joining, during which insertions or deletions may be added at the break site, and homologous recombination, in which the DNA sequence often remains unchanged. Previous work suggests that space conditions may impact the choice of DNA repair pathway, potentially compounding the risks of increased radiation exposure during space travel. However, our understanding of this problem has been limited by technical and safety concerns, which have prevented integral study of the DNA repair process in space. The CRISPR/Cas9 gene editing system offers a model for the safe and targeted generation of double-strand breaks in eukaryotes. Here we describe a CRISPR-based assay for DNA break induction and assessment of double-strand break repair pathway choice entirely in space. As necessary steps in this process, we describe the first successful genetic transformation and CRISPR/Cas9 genome editing in space. These milestones represent a significant expansion of the molecular biology toolkit onboard the International Space Station.


2019 ◽  
Author(s):  
Jen-Wei Huang ◽  
Angelo Taglialatela ◽  
Ananya Acharya ◽  
Giuseppe Leuzzi ◽  
Tarun S. Nambiar ◽  
...  

ABSTRACTHomologous recombination (HR) mediates the error-free repair of DNA double-strand breaks to maintain genomic stability. HR is carried out by a complex network of DNA repair factors. Here we identify C17orf53/MCM8IP, an OB-fold containing protein that binds ssDNA, as a novel DNA repair factor involved in HR. MCM8IP-deficient cells exhibit HR defects, especially in long-tract gene conversion, occurring downstream of RAD51 loading, consistent with a role for MCM8IP in HR-dependent DNA synthesis. Moreover, loss of MCM8IP confers cellular sensitivity to crosslinking agents and PARP inhibition. Importantly, we identify a direct interaction with MCM8-9, a putative helicase complex mutated in Primary Ovarian Insufficiency, that is crucial for MCM8IP’s ability to promote resistance to DNA damaging agents. In addition to its association with MCM8-9, MCM8IP also binds directly to RPA1. We show that the interactions of MCM8IP with both MCM8-9 and RPA are required to maintain replication fork progression in response to treatment with crosslinking agents. Collectively, our work identifies MCM8IP as a key regulator of DNA damage-associated DNA synthesis during DNA recombination and replication.


Sign in / Sign up

Export Citation Format

Share Document