Carrier transport and photoresponse for heterojunction diodes based on the reduced graphene oxide-based TiO2 composite and p-type Si

2013 ◽  
Vol 116 (1) ◽  
pp. 91-95 ◽  
Author(s):  
Yow-Jon Lin ◽  
Shih-Hung Yang
2020 ◽  
Vol 531 ◽  
pp. 147285
Author(s):  
Azhar Ali Haidry ◽  
Zhe Wang ◽  
Qawareer Fatima ◽  
Ali Zavabeti ◽  
Lijuan Xie ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu-Sung Chang ◽  
Feng-Kuan Chen ◽  
Du-Cheng Tsai ◽  
Bing-Hau Kuo ◽  
Fuh-Sheng Shieu

AbstractIn this study, we use nitrogen-doped to improving the gas-sensing properties of reduced graphene oxide. Graphene oxide was prepared according to a modified Hummers’ method and then nitrogen-doped reduced graphene oxide (N-rGO) was synthesized by a hydrothermal method using graphene oxide and NH4OH as precursors. The rGO is flat and smooth with a sheet-like morphology while the N-rGO exhibits folded morphology. This type of folding of the surface morphology can increase the gas sensitivity. The N-rGO and the rGO sensors showed n-type and p-type semiconducting behaviors in ambient conditions, respectively, and were responsive to low concentrations of NO gases (< 1000 ppb) at room temperature. The gas-sensing results showed that the N-rGO sensors could detect NO gas at concentrations as low as 400 ppb. The sensitivity of the N-rGO sensor to 1000 ppb NO (1.7) is much better than that of the rGO sensor (0.012). Compared with pure rGO, N-rGO exhibited a higher sensitivity and excellent reproducibility.


ACS Nano ◽  
2020 ◽  
Vol 14 (3) ◽  
pp. 3290-3298
Author(s):  
M. M. Juvaid ◽  
Soumya Sarkar ◽  
Pranjal Kumar Gogoi ◽  
Siddhartha Ghosh ◽  
Meenakshi Annamalai ◽  
...  

2014 ◽  
Vol 1659 ◽  
pp. 193-198 ◽  
Author(s):  
Dali Shao ◽  
Mingpeng Yu ◽  
Jie Lian ◽  
Shayla Sawyer

ABSTRACTAn Ultraviolet (UV) photodetector with high responsivity and relative fast response speed was fabricated from three dimensional WO3 nanowires/reduced graphene oxide (3D WO3 NWs/RGO) composite materials. The 3D WO3 NDs/GN composite was synthesized using a facile three-step synthesis. First, the Na2WO4/Graphene Oxide (GO) precursor was synthesized by homogeneous precipitation. Second, the Na2WO4/GO precursor was transformed into H2WO4/GO composites by acidification. Finally, the H2WO4/GO composites were reduced to 3D WO3 NWs/RGO via hydrothermal reduction process. A maximum photoresponsivity of 4.2 A/W at 374 nm was observed under 20 V bias. The UV photodetector showed relative fast transient response, which is at least 2 orders of magnitude faster than UV photodetectors fabricated from WO3 nanowires. The good photoresponsivity and fast transient response are attributed to improved carrier transport and collection efficiency through graphene.


2016 ◽  
Vol 40 (3) ◽  
pp. 2565-2573 ◽  
Author(s):  
Maryam Naseri ◽  
Lida Fotouhi ◽  
Ali Ehsani ◽  
Ferydon Babaei

As electro-active electrodes, composites of reduced graphene oxide and poly ortho aminophenol (POAP) with good uniformity are prepared by electropolymerization. In comparison with Ni-POAP, the Ni-rGO/POAP-modified electrode shows a higher response for methanol oxidation.


2015 ◽  
Vol 1086 ◽  
pp. 91-95 ◽  
Author(s):  
A. Venkatesan ◽  
Raj Nanalal Patel ◽  
E.S. Kannan

Graphene oxide (GO) is extracted from graphite oxide synthesized using modified Hummers method. The extracted GO solution is then drop casted onto a p type silicon substrate and dried in hot air oven. The dried solution is annealed at a temperature of about 200 degree Celsius for about one hour to obtain thermally reduced graphene oxide (RGO). Such thermally synthesized RGO usually have a lot of structural defects which can act as a binding site for hydrogen. The binding efficiency of hydrogen to defect centers can be increased by applying electric field to RGO as it changes the carrier concentration (doping) on the surface. This induces more polarization in the hydrogen molecule resulting in strong binding force, thereby increasing its hydrogen storage efficiency. In our experiment we have demonstrated room temperature electric field doping in RGO films by modulating the channel current by changing the back gate voltage which is a precursor for employing RGO in hydrogen storage applications.KeywordsGraphene oxide, Reduced graphene oxide, Field effect, Hydrogen storage, and Defects


Sign in / Sign up

Export Citation Format

Share Document