Transcriptome analysis of carotenoid biosynthesis in Dunaliella salina under red and blue light

2020 ◽  
Vol 38 (1) ◽  
pp. 177-185 ◽  
Author(s):  
Yuanxiang Li ◽  
Xuehua Cai ◽  
Wenhui Gu ◽  
Guangce Wang
Antioxidants ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 123 ◽  
Author(s):  
Yanan Xu ◽  
Patricia J. Harvey

The halotolerant photoautotrophic marine microalga Dunaliella salina is one of the richest sources of natural carotenoids. Here we investigated the effects of high intensity blue, red and white light from light emitting diodes (LED) on the production of carotenoids by strains of D. salina under nutrient sufficiency and strict temperature control favouring growth. Growth in high intensity red light was associated with carotenoid accumulation and a high rate of oxygen uptake. On transfer to blue light, a massive drop in carotenoid content was recorded along with very high rates of photo-oxidation. In high intensity blue light, growth was maintained at the same rate as in red or white light, but without carotenoid accumulation; transfer to red light stimulated a small increase in carotenoid content. The data support chlorophyll absorption of red light photons to reduce plastoquinone in photosystem II, coupled to phytoene desaturation by plastoquinol:oxygen oxidoreductase, with oxygen as electron acceptor. Partitioning of electrons between photosynthesis and carotenoid biosynthesis would depend on both red photon flux intensity and phytoene synthase upregulation by the red light photoreceptor, phytochrome. Red light control of carotenoid biosynthesis and accumulation reduces the rate of formation of reactive oxygen species (ROS) as well as increases the pool size of anti-oxidant.


2019 ◽  
Vol 70 (18) ◽  
pp. 4819-4834 ◽  
Author(s):  
Hexin Tan ◽  
Xianghui Chen ◽  
Nan Liang ◽  
Ruibing Chen ◽  
Junfeng Chen ◽  
...  

Fifteen genes were predicted to be closely related to safranal and crocin production by multi-omic analysis in which CsALDH3 was validated and used to construct crocetin-producing yeast.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2824
Author(s):  
Yixing Sui ◽  
Laura Mazzucchi ◽  
Parag Acharya ◽  
Yanan Xu ◽  
Geraint Morgan ◽  
...  

Strains of Dunaliella salina microalgae are of considerable research and industrial interest because they hyper-accumulate β-carotene as well as produce high-quality protein. To explore the co-production of valuable compounds in D. salina, this study compared the production of β-carotene, phytoene and amino acids in two strains cultivated under white, red or blue light until no further nitrogen was available. D. salina DF15 (CCAP 19/41 (PLY DF15)) produced more than 12% β-carotene (ash-free dry weight (AFDW) basis), and red light triggered the production of 9-cis β-carotene at a 9-cis/all-trans β-carotene ratio of 1.5. Phytoene production was also evident in D. salina DF15 under all conditions, particularly under blue light. However, the profile of essential amino acids (EAAs) and calculation of the essential amino acid index (EAAI) was less than ideal in terms of protein quality, for both strains. Umami compounds, quantified as monosodium glutamate (MSG) equivalents, indicated a higher equivalent umami concentration (EUC) in D. salina DF15 under red light (3.2 g MSG/100 g AFDW) than in D. salina CCAP19/30. Overall, D. salina DF15 demonstrates valuable traits for further exploration and product optimisation.


2021 ◽  
Author(s):  
Xin Ge ◽  
Ruiqing Li ◽  
Xiaomeng Zhang ◽  
Jingyi Zhao ◽  
Yanan Zhang ◽  
...  

Abstract Blakeslea trispora has great potential uses in industrial production because of the excellent capability of producing a large quantity of carotenoids. However, the mechanism of light induced carotenoid biosynthesis even the structural and regulatory genes in pathways remain unclear. In this paper, we reported the first transcriptome study in B. trispora in which we have carried out global survey of expression changes of genes participated in blue light response. We verified that the yield of β-carotene reaching to 3-fold when transferred from darkness to blue light for 24 h and the enhancement of transcription levels of carRA and carB presented a positive correlation with the increase in carotenoid production. RNA-seq analysis revealed that 1124 genes were upregulated and 740 genes were downregulated respectively after blue light exposure. Annotation through GO, KEGG, Swissprot and COG databases showed 11119 unigenes compared well with known gene sequences, 5514 unigenes were classified into Gene Ontology, and 4675 unigenes were involved in distinct pathways. Among the blue light responsive genes, 4 genes (carG1, carG3, carRA and carB) identified to function in carotenoid metabolic pathways were dominantly upregulated. We also discovered that 142 TF genes belonging to 45 different superfamilies showed significant differential expression (p≤ 0.05), 62 of which were obviously repressed by blue light. The detailed profile of transcription data will not only allow us to conduct further functional genomics study in B. trispora, but also enhance our understanding of potential metabolic pathway and regulatory network involved in light regulated carotenoid synthesis.


Sign in / Sign up

Export Citation Format

Share Document