Transcriptome analysis reveals that Populus tomentosa hybrid poplar 741 responds to blue light treatment by regulating growth-related genes and their metabolic pathways

2020 ◽  
Vol 152 ◽  
pp. 112512
Author(s):  
Yachao Ren ◽  
Wenlin Zhang ◽  
Yali Huang ◽  
Yiwen Zhang ◽  
Jinmao Wang ◽  
...  
Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 930
Author(s):  
Xu Yu ◽  
Xiwu Qi ◽  
Shumin Li ◽  
Hailing Fang ◽  
Yang Bai ◽  
...  

Light is a key environmental aspect that regulates secondary metabolic synthesis. The essential oil produced in mint (Mentha canadensis L.) leaves is used widely in the aromatics industry and in medicine. Under low-light treatment, significant reductions in peltate glandular trichome densities were observed. GC-MS analysis showed dramatically reduced essential oil and menthol contents. Light affected the peltate glandular trichomes’ development and essential oil yield production. However, the underlying mechanisms of this regulation were elusive. To identify the critical genes during light-regulated changes in oil content, following a 24 h darkness treatment and a 24 h recovery light treatment, leaves were collected for transcriptome analysis. A total of 95,579 unigenes were obtained, with an average length of 754 bp. About 56.58% of the unigenes were annotated using four public protein databases: 10,977 differentially expressed genes (DEGs) were found to be involved in the light signaling pathway and monoterpene synthesis pathway. Most of the TPs showed a similar expression pattern: downregulation after darkness treatment and upregulation after the return of light. In addition, the genes involved in the light signal transduction pathway were analyzed. A series of responsive transcription factors (TFs) were identified and could be used in metabolic engineering as an effective strategy for increasing essential oil yields.


Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1420
Author(s):  
Takahiro Ueda ◽  
Miki Murata ◽  
Ken Yokawa

Environmental light conditions influence the biosynthesis of monoterpenes in the mint plant. Cyclic terpenes, such as menthol, menthone, pulegone, and menthofuran, are major odor components synthesized in mint leaves. However, it is unclear how light for cultivation affects the contents of these compounds. Artificial lighting using light-emitting diodes (LEDs) for plant cultivation has the advantage of preferential wavelength control. Here, we monitored monoterpene contents in hydroponically cultivated Japanese mint leaves under blue, red, or far-red wavelengths of LED light supplements. Volatile cyclic monoterpenes, pulegone, menthone, menthol, and menthofuran were quantified using the head-space solid phase microextraction method. As a result, all light wavelengths promoted the biosynthesis of the compounds. Remarkably, two weeks of blue-light supplement increased all compounds: pulegone (362% increase compared to the control), menthofuran (285%), menthone (223%), and menthol (389%). Red light slightly promoted pulegone (256%), menthofuran (178%), and menthol (197%). Interestingly, the accumulation of menthone (229%) or menthofuran (339%) was observed with far-red light treatment. The quantification of glandular trichomes density revealed that no increase under light supplement was confirmed. Blue light treatment even suppressed the glandular trichome formation. No promotion of photosynthesis was observed by pulse-amplitude-modulation (PAM) fluorometry. The present result indicates that light supplements directly promoted the biosynthetic pathways of cyclic monoterpenes.


2020 ◽  
Vol 7 ◽  
Author(s):  
Katarzyna I. Jankowska ◽  
Rana Nagarkatti ◽  
Nirmallya Acharyya ◽  
Neetu Dahiya ◽  
Caitlin F. Stewart ◽  
...  

The introduction of pathogen reduction technologies (PRTs) to inactivate bacteria, viruses and parasites in donated blood components stored for transfusion adds to the existing arsenal toward reducing the risk of transfusion-transmitted infectious diseases (TTIDs). We have previously demonstrated that 405 nm violet-blue light effectively reduces blood-borne bacteria in stored human plasma and platelet concentrates. In this report, we investigated the microbicidal effect of 405 nm light on one important bloodborne parasite Trypanosoma cruzi that causes Chagas disease in humans. Our results demonstrated that a light irradiance at 15 mWcm−2 for 5 h, equivalent to 270 Jcm−2, effectively inactivated T. cruzi by over 9.0 Log10, in plasma and platelets that were evaluated by a MK2 cell infectivity assay. Giemsa stained T. cruzi infected MK2 cells showed that the light-treated parasites in plasma and platelets were deficient in infecting MK2 cells and did not differentiate further into intracellular amastigotes unlike the untreated parasites. The light-treated and untreated parasite samples were then evaluated for any residual infectivity by injecting the treated parasites into Swiss Webster mice, which did not develop infection even after the animals were immunosuppressed, further demonstrating that the light treatment was completely effective for inactivation of the parasite; the light-treated platelets had similar in vitro metabolic and biochemical indices to that of untreated platelets. Overall, these results provide a proof of concept toward developing 405 nm light treatment as a pathogen reduction technology (PRT) to enhance the safety of stored human plasma and platelet concentrates from bloodborne T. cruzi, which causes Chagas disease.


JAMA ◽  
1904 ◽  
Vol XLII (9) ◽  
pp. 590
Author(s):  
LOUIS E. SCHMIDT
Keyword(s):  

2018 ◽  
Vol 66 (16) ◽  
pp. 4281-4293 ◽  
Author(s):  
Wenzhao Wang ◽  
Yihui Zhou ◽  
Yingling Wu ◽  
Xinlong Dai ◽  
Yajun Liu ◽  
...  

2018 ◽  
Vol 45 (12) ◽  
pp. 1223 ◽  
Author(s):  
Haifang Yan ◽  
Bo Zhou ◽  
Wei He ◽  
Yuzhe Nie ◽  
Yuhua Li

ROC1 is a prototypic peptidyl prolyl cis/trans isomerase (PPIase) of the plant cytosol belonging to the large subfamily of cyclophilins that are associated with diverse functions through foldase, scaffolding, chaperoning or other unknown activities. Although many functions of plant cyclophilins have been reported, the molecular basis of stress-responsive expression of plant cyclophilins is still largely unknown. To characterise the roles of BrROC1 during light treatment and their responses in various abiotic stresses, we identified BrROC1 genes and characterised their expression patterns in Brassica rapa subsp. rapa ‘Tsuda’. Our results showed that BrROC1 genes are multi-family genes. Transcript level analysis showed BrROC1-2 expressed higher than BrROC1-1 in 0 to 6-day-old seedlings under natural light. Moreover, BrROC1-2 genes were also induced to highly express in the cotyledon, upper hypocotyls and lower hypocotyls of seedlings under UV-A and blue-light treatment. In addition, the transcript level of BrROC1-1 was higher in pigment tissues than that in unpigment tissues (cotyledon and lower hypocotyl) under UV-A and blue-light treatment. Furthermore, when the unpigment epidermis (shaded light) of 2-month-old ‘Tsuda’ turnip roots was exposed to UV-A light, transcript levels of the BrROC1-1 and BrROC1-2 were significantly increased with time prolongation. These two BrROC1 genes might be involved in UV-A-induced anthocyanin synthesis in the root epidermis of ‘Tsuda’ turnip, which accumulates high levels of anthocyanin. These two BrROC1 genes were also induced to be regulated by abiotic stresses such as high or low temperature, dehydration, osmotic and salt stresses. Then, the results indicate that BrROC1 genes are involved in light induction response and may play important roles in adaptation of plants to various environmental stresses.


Sign in / Sign up

Export Citation Format

Share Document