scholarly journals Genome-wide identification of expansin gene family reveals expansin genes are involved in fibre cells growth in cotton

2019 ◽  
Author(s):  
Limin Lv ◽  
Dongyun Zuo ◽  
Xingfen Wang ◽  
Hailiang Cheng ◽  
Youping Zhang ◽  
...  

Abstract Background : Expansins ( EXPs ), a group of proteins that loosen plant cell walls and cellulosic materials, are involved in regulating cell growth and diverse developmental processes in plants. However, the biological functions of this gene family are still unknown in cotton. Results: In this paper, we identified a total of 93 expansin genes in Gossypium hirsutum . These genes were classified into four subfamilies, including 67 GhEXPAs , eight GhEXPBs , six GhEXLAs , and 12 GhEXLBs , and divided into 15 subgroups. All 93 expansin genes are distributed over 24 chromosomes excluding Ghir_A02 and Ghir_D06. All GhEXP genes contain multiple exons and each GhEXP protein has multiple conserved motifs. Transcript profiling and qPCR analysis revealed that the expansin genes have distinct expression patterns in different stages of cotton fibre development. Among them, three genes ( GhEXPA4o , GhEXPA1A , and GhEXPA8h ) were highly expressed in the initiation stage, nine genes ( GhEXPA4a , GhEXPA13a , GhEXPA4f , GhEXPA4q , GhEXPA8f , GhEXPA2 , GhEXPA8g , GhEXPA8a , and GhEXPA4n ) had high expression during the fast elongation stage, while GhEXLA1c and GhEXLA1f were preferentially expressed in the transition stage of fibre development. Conclusions: Our results provide a solid basis for further elucidation of biological functions of expansin genes in cotton fibre development and valuable genetic resources used for crop improvement in the future.

2019 ◽  
Author(s):  
Limin Lv ◽  
Dongyun Zuo ◽  
Xingfen Wang ◽  
Hailiang Cheng ◽  
Youping Zhang ◽  
...  

Abstract Background : Expansins ( EXPs ), a group of proteins that loosen plant cell walls and cellulosic materials, are involved in regulating cell growth and diverse developmental processes in plants. However, the biological functions of this gene family are still unknown in cotton. Results: In this paper, we identified a total of 93 expansin genes in Gossypium hirsutum . These genes were classified into four subfamilies, including 67 GhEXPAs , 8 GhEXPBs , 6 GhEXLAs , and 12 GhEXLBs , and divided into 15 subgroups. All 93 expansin genes are distributed over 24 chromosomes excluding Ghir_A02 and Ghir_D06. All GhEXP genes contain multiple exons and each GhEXP protein has multiple conserved motifs. Transcript profiling and qPCR analysis revealed that the expansin genes have distinct expression patterns in different stages of cotton fibre development. Among them, 3 genes ( GhEXPA4o , GhEXPA1A , and GhEXPA8h ) were highly expressed in the initiation stage, 9 genes ( GhEXPA4a , GhEXPA13a , GhEXPA4f , GhEXPA4q , GhEXPA8f , GhEXPA2 , GhEXPA8g , GhEXPA8a , and GhEXPA4n ) had high expression during the fast elongation stage, while GhEXLA1c and GhEXLA1f were preferentially expressed in the transition stage of fibre development. Conclusions: Our results provide a solid basis for further elucidation of biological functions of expansin genes in cotton fibre development and valuable genetic resources used for crop improvement in the future.


2020 ◽  
Author(s):  
Limin Lv ◽  
Dongyun Zuo ◽  
Xingfen Wang ◽  
Hailiang Cheng ◽  
Youping Zhang ◽  
...  

Abstract Background : Expansins ( EXPs ), a group of proteins that loosen plant cell walls and cellulosic materials, are involved in regulating cell growth and diverse developmental processes in plants. However, the biological functions of this gene family are still unknown in cotton. Results: In this paper, we identified a total of 93 expansin genes in Gossypium hirsutum . These genes were classified into four subfamilies, including 67 GhEXPAs , 8 GhEXPBs , 6 GhEXLAs , and 12 GhEXLBs , and divided into 15 subgroups. All 93 expansin genes are distributed over 24 chromosomes excluding Ghir_A02 and Ghir_D06. All GhEXP genes contain multiple exons and each GhEXP protein has multiple conserved motifs. Transcript profiling and qPCR analysis revealed that the expansin genes have distinct expression patterns in different stages of cotton fibre development. Among them, 3 genes ( GhEXPA4o , GhEXPA1A , and GhEXPA8h ) were highly expressed in the initiation stage, 9 genes ( GhEXPA4a , GhEXPA13a , GhEXPA4f , GhEXPA4q , GhEXPA8f , GhEXPA2 , GhEXPA8g , GhEXPA8a , and GhEXPA4n ) had high expression during the fast elongation stage, while GhEXLA1c and GhEXLA1f were preferentially expressed in the transition stage of fibre development. Conclusions: Our results provide a solid basis for further elucidation of biological functions of expansin genes in cotton fibre development and valuable genetic resources used for crop improvement in the future.


2020 ◽  
Author(s):  
Limin Lv ◽  
Dongyun Zuo ◽  
Xingfen Wang ◽  
Hailiang Cheng ◽  
Youping Zhang ◽  
...  

Abstract Background : Expansins ( EXPs ), a group of proteins that loosen plant cell walls and cellulosic materials, are involved in regulating cell growth and diverse developmental processes in plants. However, the biological functions of this gene family in cotton are still unknown. Results: In this paper, we identified a total of 93 expansin genes in Gossypium hirsutum . These genes were classified into four subfamilies, including 67 GhEXPAs , 8 GhEXPBs , 6 GhEXLAs , and 12 GhEXLBs , and divided into 15 subgroups. The 93 expansin genes are distributed over 24 chromosomes, excluding Ghir_A02 and Ghir_D06. All GhEXP genes contain multiple exons, and each GhEXP protein has multiple conserved motifs. Transcript profiling and qPCR analysis revealed that the expansin genes have distinct expression patterns among different stages of cotton fibre development. Among them, 3 genes ( GhEXPA4o , GhEXPA1A , and GhEXPA8h ) were highly expressed in the initiation stage, 9 genes ( GhEXPA4a , GhEXPA13a , GhEXPA4f , GhEXPA4q , GhEXPA8f , GhEXPA2 , GhEXPA8g , GhEXPA8a , and GhEXPA4n ) had high expression during the fast elongation stage, and GhEXLA1c and GhEXLA1f were preferentially expressed in the transition stage of fibre development. Conclusions: Our results provide a solid basis for further elucidation of the biological functions of expansin genes in relation to cotton fibre development and valuable genetic resources for future crop improvement.


2019 ◽  
Author(s):  
Yong Zhou ◽  
Yuan Cheng ◽  
Chunpeng Wan ◽  
Youxin Yang ◽  
Jinyin Chen

The plant DNA-binding with one finger (Dof) gene family is a class of plant-specific transcription factors that play vital roles in many biological processes and response to stresses. In the present study, a total of 36 ClDof genes were identified in the watermelon genome, which were unevenly distributed on 10 chromosomes. Phylogenetic analysis showed that the ClDof proteins could be divided into nine groups, and the members in a particular group had similar motif arrangement and exon-intron structure. We then analyzed the expression patterns of nine selected ClDof genes in eight specific tissues by qRT-PCR, and the results showed that they have tissue-specific expression patterns. We also evaluated the expression levels of the nine selected ClDof genes under salt stress and ABA treatments using qRT-PCR, and they showed differential expression under these treatments, suggesting their important roles in stress response. Taken together, our results provide a basis for future research on the biological functions of Dof genes in watermelon.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2184
Author(s):  
Ze-Yuan Mi ◽  
Qian Zhao ◽  
Chan Lu ◽  
Qian Zhang ◽  
Lin Li ◽  
...  

Bletilla striata (Thunb. ex A. Murray) Rchb. f., a species of the perennial herb Orchidaceae, has potent anti-inflammatory and antiviral biological activities. MADS-box transcription factors play critical roles in the various developmental processes of plants. Although this gene family has been extensively investigated in many species, it has not been analyzed for B. striata. In total, 45 MADS-box genes were identified from B. striata in this study, which were classified into five subfamilies (Mδ, MIKC, Mα, Mβ, and Mγ). Meanwhile, the highly correlated protein domains, motif compositions, and exon–intron structures of BsMADSs were investigated according to local B. striata databases. Chromosome distribution and synteny analyses revealed that segmental duplication and homologous exchange were the main BsMADSs expansion mechanisms. Further, RT-qPCR analysis revealed that BsMADSs had different expression patterns in response to various stress treatments. Our results provide a potential theoretical basis for further investigation of the functions of MADS genes during the growth of B. striata.


2019 ◽  
Vol 20 (2) ◽  
pp. 349 ◽  
Author(s):  
Qin Chen ◽  
Quan-Jia Chen ◽  
Guo-Qing Sun ◽  
Kai Zheng ◽  
Zheng-Pei Yao ◽  
...  

Cyclophilins (CYPs) are a member of the immunophilin superfamily (in addition to FKBPs and parvulins) and play a significant role in peptidyl-prolyl cis-trans isomerase (PPIase) activity. Previous studies have shown that CYPs have important functions in plants, but no genome-wide analysis of the cotton CYP gene family has been reported, and the specific biological function of this gene is still elusive. Based on the release of the cotton genome sequence, we identified 75, 78, 40 and 38 CYP gene sequences from G. barbadense, G. hirsutum, G. arboreum, and G. raimondii, respectively; 221 CYP genes were unequally located on chromosomes. Phylogenetic analysis showed that 231 CYP genes clustered into three major groups and eight subgroups. Collinearity analysis showed that segmental duplications played a significant role in the expansion of CYP members in cotton. There were light-responsiveness, abiotic-stress and hormone-response elements upstream of most of the CYPs. In addition, the motif composition analysis revealed that 49 cyclophilin proteins had extra domains, including TPR (tetratricopeptide repeat), coiled coil, U-box, RRM (RNA recognition motif), WD40 (RNA recognition motif) and zinc finger domains, along with the cyclophilin-like domain (CLD). The expression patterns based on qRT-PCR showed that six CYP expression levels showed greater differences between Xinhai21 (long fibres, G. barbadense) and Ashmon (short fibres, G. barbadense) at 10 and 20 days postanthesis (DPA). These results signified that CYP genes are involved in the elongation stage of cotton fibre development. This study provides a valuable resource for further investigations of CYP gene functions and molecular mechanisms in cotton.


2019 ◽  
Author(s):  
Yong Zhou ◽  
Yuan Cheng ◽  
Chunpeng Wan ◽  
Youxin Yang ◽  
Jinyin Chen

The plant DNA-binding with one finger (Dof) gene family is a class of plant-specific transcription factors that play vital roles in many biological processes and response to stresses. In the present study, a total of 36 ClDof genes were identified in the watermelon genome, which were unevenly distributed on 10 chromosomes. Phylogenetic analysis showed that the ClDof proteins could be divided into nine groups, and the members in a particular group had similar motif arrangement and exon-intron structure. We then analyzed the expression patterns of nine selected ClDof genes in eight specific tissues by qRT-PCR, and the results showed that they have tissue-specific expression patterns. We also evaluated the expression levels of the nine selected ClDof genes under salt stress and ABA treatments using qRT-PCR, and they showed differential expression under these treatments, suggesting their important roles in stress response. Taken together, our results provide a basis for future research on the biological functions of Dof genes in watermelon.


Cells ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 86 ◽  
Author(s):  
Wei Wang ◽  
Yingying Cheng ◽  
Dongdong Chen ◽  
Dan Liu ◽  
Mengjiao Hu ◽  
...  

Catalases (CATs), which were coded by the catalase gene family, were a type notably distinguished ROS-metabolizing proteins implicated to perform various physiological functions in plant growth, development and stress responses. However, no systematical study has been performed in cotton. In the present study, we identified 7 and 7 CAT genes in the genome of Gossypium hirsutum L. Additionally, G. barbadense L., respectively. The results of the phylogenetic and synteny analysis showed that the CAT genes were divided into two groups, and whole-genome duplication (WGD) or polyploidy events contributed to the expansion of the Gossypium CAT gene family. Expression patterns analysis showed that the CAT gene family possessed temporal and spatial specificity and was induced by the Verticillium dahliae infection. In addition, we predicted the putative molecular regulatory mechanisms of the CAT gene family. Based on the analysis and preliminary verification results, we hypothesized that the CAT gene family, which might be regulated by transcription factors (TFs), alternative splicing (AS) events and miRNAs at different levels, played roles in cotton development and stress tolerance through modulating the reactive oxygen species (ROS) metabolism. This is the first report on the genome-scale analysis of the cotton CAT gene family, and these data will help further study the roles of CAT genes during stress responses, leading to crop improvement.


2020 ◽  
Author(s):  
Yanan Song ◽  
Hongli Cui ◽  
Ying Shi ◽  
Jinai Xue ◽  
Chunli Ji ◽  
...  

Abstract Background: WRKY gene family is one of the largest transcription factor families and WRKY proteins (WRKYs) have the complex biological functions to regulate plant metabolic processes. Although the WRKY genes were identified in many species and the functions were verified, there were no reports of Camelina sativa WRKY genes.Results: In this investigation, a total of 202 CsWRKY genes were identified and encoded 242 CsWRKYs. The CsWRKYs were further classified into three major groups according to their structure and phylogeny. The comprehensive analysis showed the characteristic sequences of CsWRKYs were conserved in the evolutionary process. In addition, the 137 segmental duplication events were the major force to expand the CsWRKY members in evolution. Compared with other reported plant species, CsWRKYs family as the largest WRKY gene family had maximum members. Furthermore, expression profiling indicated that different CsWRKY members exhibited differently in shoots and roots, and some CsWRKY genes were also up-regulated to varying degrees under salt stress in shoots.Conclusions: In this research, a detailed overview of CsWRKY family genes and expression patterns offered precious information for understanding the potential evolutionary process and the biological functions of CsWRKY genes, which was useful for the further characteristic research of CsWRKY genes and the development of high-quality Camelina sativa varieties.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Na Sang ◽  
Hui Liu ◽  
Bin Ma ◽  
Xianzhong Huang ◽  
Lu Zhuo ◽  
...  

Abstract Background In plants, 14-3-3 proteins, also called GENERAL REGULATORY FACTORs (GRFs), encoded by a large multigene family, are involved in protein–protein interactions and play crucial roles in various physiological processes. No genome-wide analysis of the GRF gene family has been performed in cotton, and their functions in flowering are largely unknown. Results In this study, 17, 17, 31, and 17 GRF genes were identified in Gossypium herbaceum, G. arboreum, G. hirsutum, and G. raimondii, respectively, by genome-wide analyses and were designated as GheGRFs, GaGRFs, GhGRFs, and GrGRFs, respectively. A phylogenetic analysis revealed that these proteins were divided into ε and non-ε groups. Gene structural, motif composition, synteny, and duplicated gene analyses of the identified GRF genes provided insights into the evolution of this family in cotton. GhGRF genes exhibited diverse expression patterns in different tissues. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that the GhGRFs interacted with the cotton FLOWERING LOCUS T homologue GhFT in the cytoplasm and nucleus, while they interacted with the basic leucine zipper transcription factor GhFD only in the nucleus. Virus-induced gene silencing in G. hirsutum and transgenic studies in Arabidopsis demonstrated that GhGRF3/6/9/15 repressed flowering and that GhGRF14 promoted flowering. Conclusions Here, 82 GRF genes were identified in cotton, and their gene and protein features, classification, evolution, and expression patterns were comprehensively and systematically investigated. The GhGRF3/6/9/15 interacted with GhFT and GhFD to form florigen activation complexs that inhibited flowering. However, GhGRF14 interacted with GhFT and GhFD to form florigen activation complex that promoted flowering. The results provide a foundation for further studies on the regulatory mechanisms of flowering.


Sign in / Sign up

Export Citation Format

Share Document