scholarly journals SARS-CoV-2, myocardial injury and inflammation: insights from a large clinical and autopsy study

Author(s):  
Matteo Dal Ferro ◽  
Rossana Bussani ◽  
Alessia Paldino ◽  
Vincenzo Nuzzi ◽  
Chiara Collesi ◽  
...  

Abstract Objective Despite growing evidence about myocardial injury in hospitalized COronaVIrus Disease 2019 (COVID-19) patients, the mechanism behind this injury is only poorly understood and little is known about its association with SARS-CoV-2-mediated myocarditis. Furthermore, definite evidence of the presence and role of SARS-CoV-2 in cardiomyocytes in the clinical scenario is still lacking. Methods We histologically characterized myocardial tissue of 40 patients deceased with severe SARS-CoV-2 infection during the first wave of the pandemic. Clinical data were also recorded and analyzed. In case of findings supportive of myocardial inflammation, histological analysis was complemented by RT-PCR and immunohistochemistry for SARS-CoV-2 viral antigens and in situ RNA hybridization for the detection of viral genomes. Results Both chronic and acute myocardial damage was invariably present, correlating with the age and comorbidities of our population. Myocarditis of overt entity was found in one case (2.5%). SARS-CoV-2 genome was not found in the cardiomyocytes of the patient with myocarditis, while it was focally and negligibly present in cardiomyocytes of patients with known viral persistence in the lungs and no signs of myocardial inflammation. The presence of myocardial injury was not associated with myocardial inflammatory infiltrates. Conclusions In this autopsy cohort of COVID-19 patients, myocarditis is rarely found and not associated with SARS-CoV-2 presence in cardiomyocytes. Chronic and acute forms of myocardial damage are constantly found and correlate with the severity of COVID-19 disease and pre-existing comorbidities. Graphic abstract

2021 ◽  
Vol 9 (2) ◽  
pp. 454
Author(s):  
Esther Viedma ◽  
Elias Dahdouh ◽  
José González-Alba ◽  
Sara González-Bodi ◽  
Laura Martínez-García ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first detected in Madrid, Spain, on 25 February 2020. It increased in frequency very fast and by the end of May more than 70,000 cases had been confirmed by reverse transcription-polymerase chain reaction (RT-PCR). To study the lineages and the diversity of the viral population during this first epidemic wave in Madrid we sequenced 224 SARS-CoV-2 viral genomes collected from three hospitals from February to May 2020. All the known major lineages were found in this set of samples, though B.1 and B.1.5 were the most frequent ones, accounting for more than 60% of the sequences. In parallel with the B lineages and sublineages, the D614G mutation in the Spike protein sequence was detected soon after the detection of the first coronavirus disease 19 (COVID-19) case in Madrid and in two weeks became dominant, being found in 80% of the samples and remaining at this level during all the study periods. The lineage composition of the viral population found in Madrid was more similar to the European population than to the publicly available Spanish data, underlining the role of Madrid as a national and international transport hub. In agreement with this, phylodynamic analysis suggested multiple independent entries before the national lockdown and air transportation restrictions.


Author(s):  
Kang Zhou ◽  
Yan Xu ◽  
Qiong Wang ◽  
Lini Dong

Abstract Myocardial injury is still a serious condition damaging the public health. Clinically, myocardial injury often leads to cardiac dysfunction and, in severe cases, death. Reperfusion of the ischemic myocardial tissues can minimize acute myocardial infarction (AMI)-induced damage. MicroRNAs are commonly recognized in diverse diseases and are often involved in the development of myocardial ischemia/reperfusion injury. However, the role of miR-431 remains unclear in myocardial injury. In this study, we investigated the underlying mechanisms of miR-431 in the cell apoptosis and autophagy of human cardiomyocytes in hypoxia/reoxygenation (H/R). H/R treatment reduced cell viability, promoted cell apoptotic rate, and down-regulated the expression of miR-431 in human cardiomyocytes. The down-regulation of miR-431 by its inhibitor reduced cell viability and induced cell apoptosis in the human cardiomyocytes. Moreover, miR-431 down-regulated the expression of autophagy-related 3 (ATG3) via targeting the 3ʹ-untranslated region of ATG3. Up-regulated expression of ATG3 by pcDNA3.1-ATG3 reversed the protective role of the overexpression of miR-431 on cell viability and cell apoptosis in H/R-treated human cardiomyocytes. More importantly, H/R treatments promoted autophagy in the human cardiomyocytes, and this effect was greatly alleviated via miR-431-mimic transfection. Our results suggested that miR-431 overexpression attenuated the H/R-induced myocardial damage at least partly through regulating the expression of ATG3.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Pei-Ling I Hsu ◽  
Fan-E Mo

Introduction: Matricellular protein CCN1 is expressed in myocardial infarction, pressure overload, and ischemia in mice, and in patients with a failing heart. Despite its well-documented angiogenic activities, CCN1 promotes fibroblast apoptosis in some contexts. The role of CCN1 in an injured heart was not clear. We assessed the hypothesis that CCN1 plays a detrimental role and mediates cardiac injury through its proapoptotic activities. Methods and Results: To test the role of CCN1 in cardiac injury, we employed two different myocardial injury models in mice, including a work-overload-induced injury created by isoproterenol treatment (ISO; 100 mg/kg/day; s.c. for 5 days; n= 6 for each group) and an injury induced by the cardiotoxicity of doxorubicin (DOX, single dose of 15 mg/kg; i.p. sacrificed after 14 days). Ccn1 expression was induced in the damaged myocardium in both injury models. A line of knock-in mice carrying an apoptosis-defective Ccn1 mutant allele, Ccn1-dm , which has disrupted integrin α 6 β 1 binding sites, were tested in the ISO- or DOX -induced cardiac injury. Myocardial damage was seen in tissues from wile-type (WT) hearts after receiving ISO. Ccn1 dm/dm (DM) mice possessed remarkable resistance against ISO or DOX treatments and exhibited no tissue damage or fibrosis compared to WT mice after H&E or Masson’s trichrome stainings. DM mice were resistant to both ISO- and DOX-induced cardiac cell apoptosis, indicating that CCN1 is critically mediating cardiomyocyte apoptotic death in cardiac injury. Moreover, we found that death factor Fas ligand (FasL) and its receptor Fas were upregulated in WT mice receiving ISO or DOX treatments by immunohistochemical staining, compared with the PBS-control. 8-OHdG-positive, a marker for oxidative stress, cardiomyocytes were increased by ISO or DOX treatments as well. In contrast, the expression of Fas/FasL, and the 8-OHdG-positive cardiomyocytes in the myocardium of DM mice were not changed by ISO or DOX. Conclusions: We identify CCN1 as a novel pathophysiological regulator of cardiomyocyte apoptosis in cardiac injury. Blocking apoptotic function of CCN1 effectively prevents myocardial injury in mice. CCN1 and its receptor α 6 β 1 represent promising future therapeutic targets in cardiac injury.


2011 ◽  
Vol 2011 ◽  
pp. 1-21 ◽  
Author(s):  
Yan Feng ◽  
Wei Chao

Toll-like receptors (TLRs) are a member of the innate immune system. TLRs detect invading pathogens through the pathogen-associated molecular patterns (PAMPs) recognition and play an essential role in the host defense. TLRs can also sense a large number of endogenous molecules with the damage-associated molecular patterns (DAMPs) that are produced under various injurious conditions. Animal studies of the last decade have demonstrated that TLR signaling contributes to the pathogenesis of the critical cardiac conditions, where myocardial inflammation plays a prominent role, such as ischemic myocardial injury, myocarditis, and septic cardiomyopathy. This paper reviews the animal data on (1) TLRs, TLR ligands, and the signal transduction system and (2) the important role of TLR signaling in these critical cardiac conditions.


Blood ◽  
1999 ◽  
Vol 94 (5) ◽  
pp. 1545-1549 ◽  
Author(s):  
Masanori Daibata ◽  
Takahiro Taguchi ◽  
Yuiko Nemoto ◽  
Hirokuni Taguchi ◽  
Isao Miyoshi

Abstract Human herpesvirus 6 (HHV-6) genome has been detected in several human lymphoproliferative disorders with no signs of active viral infection, and found to be integrated into chromosomes in some cases. We previously reported a woman with HHV-6–infected Burkitt’s lymphoma. Fluorescence in situ hybridization showed that the viral genome was integrated into the long arm of chromosome 22 (22q13). The patient’s asymptomatic husband also carried HHV-6 DNA integrated at chromosome locus 1q44. To assess the possibility of chromosomal transmission of HHV-6 DNA, we looked for HHV-6 DNA in the peripheral blood of their daughter. She had HHV-6 DNA on both chromosomes 22q13 and 1q44, identical to the site of viral integration of her mother and father, respectively. The findings suggested that her viral genomes were inherited chromosomally from both parents. The 3 family members were all seropositive for HHV-6, but showed no serological signs of active infection. To confirm the presence of HHV-6 DNA sequences, we performed polymerase chain reaction (PCR) with 7 distinct primer pairs that target different regions of HHV-6. The viral sequences were consistently detected by single-step PCR in all 3 family members. We propose a novel latent form for HHV-6, in which integrated viral genome can be chromosomally transmitted. The possible role of the chromosomally integrated HHV-6 in the pathogenesis of lymphoproliferative diseases remains to be explained.


2021 ◽  
Vol 12 ◽  
Author(s):  
You Zhou ◽  
Tao Li ◽  
Zhiqing Chen ◽  
Junwen Huang ◽  
Zhenbai Qin ◽  
...  

Coronary microembolization (CME) is a complicated problem that commonly arises in the context of coronary angioplasty. The lncRNA taurine-up regulated gene 1 (TUG1), significantly contributes to cardiovascular diseases; however, its contribution to CME-induced myocardial damage remains elusive. Herein, we establish the rat CME model and investigate the role of TUG1 in CME. The cell viability was evaluated via CCK-8 assay. Serum and cell culture supernatant samples were evaluated via ELISA. The dual luciferase reporter (DLR) assay, RIP, and RNA-pull down were conducted to validate the associations between TUG1 and miR-186-5p as well as miR-186-5p and XIAP. The expression of TUG1, miR-186-5p, and XIAP mRNA were determined by RT-qPCR, and proteins were evaluated via immuneblotting. As a result, TUG1 and XIAP were significantly down-regulated, and the miR-186-5p level was found to be remarkably up-regulated in CME myocardial tissues. Overexpression of TUG1 alleviated CME-induced myocardial injury and pyroptosis, whereas TUG1 knockdown showed the opposite effects. The DLR assay, RIP, and RNA-pull down results reveal that TUG1 directly targets miR-186-5p and miR-186-5p directly targets XIAP. In vitro rescue experiments show that TUG1 overexpression alleviates LPS-caused cardiomyocyte injury and pyroptosis via sponging miR-186-5p and regulating XIAP, and depression of miR-186-5p reduces LPS-induced cardiomyocyte injury and pyroptosis by targeting XIAP. Concludingly, the overexpression of TUG1 alleviates NLRP3 inflammasome-mediated cardiomyocyte pyroptosis through targeting the miR-186-5p/XIAP axis in CME-induced myocardial injury.


Viruses ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 530 ◽  
Author(s):  
Guendalina Zaccaria ◽  
Alessio Lorusso ◽  
Melanie M. Hierweger ◽  
Daniela Malatesta ◽  
Sabrina VP Defourny ◽  
...  

In this study, starting from nucleic acids purified from the brain tissue, Nanopore technology was used to identify the etiological agent of severe neurological signs observed in a cow which was immediately slaughtered. Histological examination revealed acute non-suppurative encephalomyelitis affecting the brainstem, cerebrum, cerebellum, and medulla oblongata, while by using PCR-based assays, the nucleic acids of major agents for neurological signs were not detected. By using Nanopore technology, 151 sequence reads were assigned to Bovine Astrovirus (BoAstV). Real-time RT-PCR and in situ hybridization (ISH) confirmed the presence of viral RNA in the brain. Moreover, using the combination of fluorescent ISH and immunofluorescence (IF) techniques, it was possible to detect BoAstV RNA and antigens in the same cells, suggesting the active replication of the virus in infected neurons. The nearly whole genome of the occurring strain (BoAstV PE3373/2019/Italy), obtained by Illumina NextSeq 500, showed the highest nucleotide sequence identity (94.11%) with BoAstV CH13/NeuroS1 26,730 strain, an encephalitis-associated bovine astrovirus. Here, we provide further evidence of the role of AstV as a neurotropic agent. Considering that in a high proportion of non-suppurative encephalitis cases, which are mostly indicative of a viral infection, the etiologic agent remains unknown, our result underscores the value and versatility of Nanopore technology for a rapid diagnosis when the PCR-based algorithm gives negative results.


Blood ◽  
1999 ◽  
Vol 94 (5) ◽  
pp. 1545-1549 ◽  
Author(s):  
Masanori Daibata ◽  
Takahiro Taguchi ◽  
Yuiko Nemoto ◽  
Hirokuni Taguchi ◽  
Isao Miyoshi

Human herpesvirus 6 (HHV-6) genome has been detected in several human lymphoproliferative disorders with no signs of active viral infection, and found to be integrated into chromosomes in some cases. We previously reported a woman with HHV-6–infected Burkitt’s lymphoma. Fluorescence in situ hybridization showed that the viral genome was integrated into the long arm of chromosome 22 (22q13). The patient’s asymptomatic husband also carried HHV-6 DNA integrated at chromosome locus 1q44. To assess the possibility of chromosomal transmission of HHV-6 DNA, we looked for HHV-6 DNA in the peripheral blood of their daughter. She had HHV-6 DNA on both chromosomes 22q13 and 1q44, identical to the site of viral integration of her mother and father, respectively. The findings suggested that her viral genomes were inherited chromosomally from both parents. The 3 family members were all seropositive for HHV-6, but showed no serological signs of active infection. To confirm the presence of HHV-6 DNA sequences, we performed polymerase chain reaction (PCR) with 7 distinct primer pairs that target different regions of HHV-6. The viral sequences were consistently detected by single-step PCR in all 3 family members. We propose a novel latent form for HHV-6, in which integrated viral genome can be chromosomally transmitted. The possible role of the chromosomally integrated HHV-6 in the pathogenesis of lymphoproliferative diseases remains to be explained.


2021 ◽  
Author(s):  
Yang Ruan ◽  
Shuai Meng ◽  
Ruofei Jia ◽  
Xiaojing Cao ◽  
zening Jin

Abstract Objective: A large cohort of studies have addressed the therapeutic importance of microRNA (miR) in the treatment of myocardial infarction (MI). The current paper gives prominence to the role of miR-322-5p in MI by regulating B-cell translocation gene 2 (BTG2).Methods: In a rat model of MI miR-322-5p and BTG2 expression was estimated. Adenovirus that altered miR-322-5p or BTG2 expression was injected into MI rats. After that, cardiac function, inflammation, myocardial injury, pathological condition, apoptosis, and the NF-κB pathway-related genes in the myocardial tissue of MI rats after targeted treatment were evaluated. The targeting relationship between miR-322-5p and BTG2 was assessed.Results: miR-322-5p was lowly expressed and BTG2 was highly expressed in the myocardial tissue of MI rats. Restored miR-322-5p improved cardiac function, relived inflammation and myocardial injury, suppressed pathological condition and apoptosis and inactivated NF-κB pathway in MI rats. BTG2 expression was negatively mediated by miR-322-5p. Overexpressed BTG2 rescued miR-322-5p-induced cardioprotection on MI rats.Conclusion: It is evident that miR-322-5p protects against MI through suppressing BTG2 expression.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jianyuan Pan ◽  
Buse Alexan ◽  
Dorn Dennis ◽  
Chiristine Bettina ◽  
Laeuf Ilona Mariya Christoph ◽  
...  

Abstract Objective Little is known regarding the functional role of microRNA-193-3p (miR-193-3p) in sepsis. Hence, the aim of the present study was to investigate the effect of miR-193-3p on myocardial injury in mice with sepsis and its mechanism through the regulation of signal transducers and activators of transcription 3 (STAT3). Methods The mice model of sepsis was established by cecal ligation and puncture (CLP), septic mice were injected with miR-193-3p agomir, miR-193-3p antagomir or siRNA-STAT3. The expression of miR-193-3p, STAT3 and HMGB1 in the myocardial tissue of septic mice were detected. Cardiac ultrasound, hemodynamics, myocardial injury markers, inflammatory factors and cardiomyocyte apoptosis in septic mice were measured. Results MiR-193-3p expression was reduced while STAT3 expression was increased in septic mice. Down-regulated STAT3 or up-regulated miR-193-3p improved cardiac function, attenuated myocardial injury, inflammation and cardiomyocyte apoptosis in septic mice. Knockdown STAT3 reversed the role of inhibited miR-193-3p for mice with sepsis. miR-193-3p targeted STAT3, thereby inhibiting HMGB1 expression. Conclusion This study provides evidence that miR-193-3p targets STAT3 expression to reduce HMGB1 expression, thereby reducing septic myocardial damage. MiR-193-3p might be a potential candidate marker and therapeutic target for sepsis.


Sign in / Sign up

Export Citation Format

Share Document