The dialogue between the brain and immune system involves not only the HPA-axis

2000 ◽  
Vol 59 (S2) ◽  
pp. II49-II53 ◽  
Author(s):  
K. Schauenstein ◽  
I. Rinner ◽  
P. Felsner ◽  
P. Liebmann ◽  
H.S. Haas ◽  
...  
Keyword(s):  
Hpa Axis ◽  
2015 ◽  
Vol 34 (1) ◽  
pp. 90
Author(s):  
Adnil Edwin Nurdin

AbstrakPsikoneuroimunologi merupakan konsep terintegrasi mengenai fungsi regulasi-imun untuk mempertahankan homeostasis. Untuk mempertahankan homeostasis, sistem imun berintegrasi dengan proses psikofisiologik otak, dan karena itu mempengaruhi dan dipengaruhi otak. Melalui pendekatan ini telah mulai dipahami mekanisme interaksi antara perilaku, sistem saraf, sistem endokrin, dan fungsi imun. Komponen perilaku dari interaksi ini melibatkan kondisioning Pavlov pada peningkatan maupun penekanan antibodi dan respon imun seluler. Kondisioning ini berekspresi sebagai efek pengalaman stress terhadap fungsi imun. Selanjutnya diketahui bahwa mekanisme terintegrasi ini berlangsung dalam ritme yang berkaitan dengan ritme lingkungan seperti ritme Sirkadian. Respon stress berkelanjutan berekspresi sebagai sindroma adaptasi umum. Sebagai respon akut dimulai dengan initial brief alarm reaction. Dalam tahap ini peningkatan sekresi cortisol pada aksis Hypothalamic-Pituitary-Adrenal (HPA) menimbulkan supresi pada sebagian besar fungsi imun dan peningkatan aktifitas sistem simpatis. Bila stress tidak dapat diatasi secara efektif, tahap kedua prolonged resistance period akan dimulai, dimana aktivasi aksis HPA akan menurun tetapi tidak pernah mencapai kondisi basal. Kegagalan berkelanjutan untuk mengatasi stress akan berakhir pada terminal stage of exhaustion and death. Aplikasi medis psikoneuroimunologi akan meningkatkan efektifitas terapi penyakit keganasan, gangguan kardiovaskular, penyakit infeksi, trauma fisik, transplantasi, dan gangguan jiwa.Kata kunci: aksis HPA, antibodi, aplikasi medis, cortisol, homeostasis, melawan atau lari, otak, Pavlov, perilaku, psikofisiologik, psikoneuroimunologi, sindroma adaptasi umum, sistem imun, sistem LS-NA, respon stress, ritme SirkadianAbstractPsychoneuroimmunology is an integrated concept of immune-regulatory function. To maintain homeostasis, the immune system is integrated with psychophysiological processes of the brain, and is therefore influenced by and capable of influencing the brain. Mechanism of interaction among behavior, neural, endocrine, and immune functions in adaptation to environmental stressors have come to light. The behavioral components of this interaction involve the Pavlov conditioning both in the enhancement and supression of antibody-and cell-mediated immune responses. This conditioning expressed as effects of stressful experiences on immune function. This integrated mechanism operated in a rhythmTINJAUAN PUSTAKA91related to environmental rhythm such as Circadian rhythm. Prolonged stress response will be expressed as general adaptation syndrome. As an acute response it will begin with initial brief alarm reaction. In this stage increased cortisol secretion in Hypothalamic-pituitary-adrenal (HPA) axis resulted in supression of main immune function and arousal of sympathetic system If the stress can not be coped effectivelly, a second stage of prolonged resistance period will begin, in which HPA axis activation will be decreased but never reach the basal condition. Continued failure to cope with the stress will end in terminal stage of exhaustion and death.Medical application of psychoimmunology can enchance the effectivity of the treatment of malignancy, cardiovascular disorder, infectious diseases, physical trauma, transplantation, and mental disorder.Key word : antibody, behavioral, brain, Circadian rhythm, cortisol, fight or flight, general adaptation syndrome, homeostasis, HPA axis, immune system, LC-NA system, medical application, Pavlov, psychoneuroimmunology, psychophysiological, stress responses


2019 ◽  
Vol 21 (1) ◽  
pp. 21-25 ◽  

Emerging results support the concept that Alzheimer disease (AD) and age-related dementia are affected by the ability of the immune system to contain the brain's pathology. Accordingly, well-controlled boosting, rather than suppression of systemic immunity, has been suggested as a new approach to modify disease pathology without directly targeting any of the brain's disease hallmarks. Here, we provide a short review of the mechanisms orchestrating the cross-talk between the brain and the immune system. We then discuss how immune checkpoint blockade directed against the PD-1/PD-L1 pathways could be developed as an immunotherapeutic approach to combat this disease using a regimen that will address the needs to combat AD.


2019 ◽  
Vol 21 (1) ◽  
pp. 21-25 ◽  

Emerging results support the concept that Alzheimer disease (AD) and age-related dementia are affected by the ability of the immune system to contain the brain’s pathology. Accordingly, well-controlled boosting, rather than suppression of systemic immunity, has been suggested as a new approach to modify disease pathology without directly targeting any of the brain’s disease hallmarks. Here, we provide a short review of the mechanisms orchestrating the cross-talk between the brain and the immune system. We then discuss how immune checkpoint blockade directed against the PD-1/PD-L1 pathways could be developed as an immunotherapeutic approach to combat this disease using a regimen that will address the needs to combat AD.


2006 ◽  
Vol 18 (5) ◽  
pp. 193-209 ◽  
Author(s):  
Richard J. Porter ◽  
Peter Gallagher

Background:New evidence is emerging regarding abnormalities of hypothalamic-pituitary-adrenal (HPA) axis function in subtypes of affective disorders. Adverse effects of HPA axis dysregulation may include dysfunction of monoaminergic transmitter systems, cognitive impairment and peripheral effects. Newer treatments specifically targeting the HPA axis are being developed.Objective:To review these developments focusing particularly on the glucocorticoid receptor (GR) antagonist mifepristone.Method:A selective review of the literature.Results:The function of GRs is increasingly being defined. The role of corticotrophin-releasing hormone (CRH) and dehydroepiandrosterone (DHEA) in the brain is also increasingly understood. HPA axis function is particularly likely to be abnormal in psychotic depression and bipolar disorder, and it is in these conditions that trials of the GR antagonist mifepristone are being focused. CRH antagonists and DHEA are also being investigated as potential treatments.Conclusion:Initial studies of mifepristone and other HPA-axis-targeting agents in psychotic depression and bipolar disorder are encouraging and confirmatory studies are awaited.


Cell ◽  
1986 ◽  
Vol 47 (3) ◽  
pp. 333-348 ◽  
Author(s):  
Paul Jay Maddon ◽  
Angus G. Dalgleish ◽  
J.Steven McDougal ◽  
Paul R. Clapham ◽  
Robin A. Weiss ◽  
...  

Circulation ◽  
2018 ◽  
Vol 138 (Suppl_2) ◽  
Author(s):  
Yuntian Shen ◽  
Qiang Zhao ◽  
Jiangbo Wu ◽  
Zhuoran Wang ◽  
Wei Yang

Introduction: Cardiac arrest (CA) is associated with high mortality and morbidity, which is in part due to infectious complications developed in CA patients. Infection complications, particularly pneumonia, occur in approximately 60% of CA patients. Given this high incidence, we hypothesized that after CA, the immune system is impaired, which increases the susceptibility of CA patients to potential infections. Therefore, in this study, we systematically examined the immune response in the brain and peripheral immune organs after CA. Methods: Mice were subjected to CA and cardiopulmonary resuscitation (CA/CPR). Flow cytometry, ELISA, immunohistochemistry, and quantitative PCR were used to analyze the immune response in various post-CA organs. Results: First, we characterized the time course of the immune response in the spleen after CA/CPR. CA/CPR induced significant changes in all major immune cell populations. Notably, B cell frequencies decreased, while T cell frequencies increased, in various organs on day 3 post-CA. Further, the levels of pro-inflammatory cytokines, eg IL-6, were markedly increased in the blood and brain after CA. Critically, we found that the lymphocyte counts in the spleen and thymus were dramatically lower in CA mice than in sham mice. Interestingly, CA/CPR caused progressive atrophy of the spleen and thymus. Since it has been shown that CA/CPR alters activity of the hypothalamic-pituitary-adrenal (HPA) axis, we speculated that CA-induced atrophy of lymphoid organs is mediated by the HPA axis. Thus, we treated CA mice with RU486, a glucocorticoid receptor antagonist. Indeed, this treatment reversed CA-induced organ atrophy and mitigated immune cell depletion, both in the thymus and spleen. Conclusions: We provided for the first time evidence that CA/CPR rapidly induced a systemic inflammatory response followed by impairment of the immune system, which eventually led to a massive loss of immune cells in the peripheral immune organs. This CA-induced immunodeficiency appears to be mediated by dysregulation of the HPA axis. Our findings here may be of high clinical significance, considering the high incidence of infectious complications in CA patients and their detrimental effects on CA outcome.


Author(s):  
Mohammad Ali El-Darouti ◽  
Faiza Mohamed Al-Ali

2018 ◽  
Vol 215 (11) ◽  
pp. 2702-2704 ◽  
Author(s):  
Aleksandra Deczkowska ◽  
Michal Schwartz

Immune cells patrol the brain and can support its function, but can we modulate brain–immune communication to fight neurological diseases? Here, we briefly discuss the mechanisms orchestrating the cross-talk between the brain and the immune system and describe how targeting this interaction in a well-controlled manner could be developed as a universal therapeutic approach to treat neurodegeneration.


2022 ◽  
Vol 23 (2) ◽  
pp. 669
Author(s):  
Luiza Marek-Jozefowicz ◽  
Rafał Czajkowski ◽  
Alina Borkowska ◽  
Bogusław Nedoszytko ◽  
Michał A. Żmijewski ◽  
...  

Psoriasis is a chronic inflammatory skin disease with systemic manifestation, in which psychological factors play an important role. The etiology of psoriasis is complex and multifactorial, including genetic background and environmental factors such as emotional or physical stress. Psychological stress may also play a role in exacerbation of psoriasis, by dysregulation of the hypothalamic–pituitary–adrenal (HPA) axis, sympathetic–adrenal–medullary axis, peripheral nervous system, and immune system. Skin cells also express various neuropeptides and hormones in response to stress, including the fully functional analog of the HPA axis. The deterioration of psoriatic lesions is accompanied by increased production of inflammatory mediators, which could contribute to the imbalance of neurotransmitters and the development of symptoms of depression and anxiety. Therefore, deregulation of the crosstalk between endocrine, paracrine, and autocrine stress signaling pathways contributes to clinical manifestations of psoriasis, which requires multidisciplinary approaches.


Sign in / Sign up

Export Citation Format

Share Document