Suitability of a batch in vitro fermentation model using human faecal microbiota for prediction of conversion of flaxseed lignans to enterolactone with reference to an in vivo rat model

2005 ◽  
Vol 45 (1) ◽  
pp. 45-51 ◽  
Author(s):  
A.-M. Aura ◽  
S. Oikarinen ◽  
M. Mutanen ◽  
S.-M. Heinonen ◽  
H. C. T. Adlercreutz ◽  
...  
2022 ◽  
Author(s):  
Lisard Iglesias-Carres ◽  
Emily Krueger ◽  
Jacob Herring ◽  
Jeffery Tessem ◽  
Andrew Neilson

Trimethylamine N-oxide (TMAO) is a pro-atherosclerotic product of dietary choline metabolism generated by a microbiome-host axis. The first step in this pathway is enzymatic metabolism of choline to trimethylamine (TMA) by the gut microbiota. This reaction could be targeted to reduce atherosclerosis risk. We aimed to evaluate potential inhibitory effects of select dietary phenolics and their relevant gut microbial metabolites on TMA production via a human ex vivo-in vitro fermentation model. Various phenolics inhibited choline use and TMA production. The most bioactive compounds tested (caffeic acid, catechin and epicatechin) reduced TMA-d9 formation (compared to control) by 57.5 ± 1.3% to 72.5 ± 0.4% at 8 h and preserved remaining choline-d9 concentrations by 194.1 ± 6.4% to 256.1 ± 6.3% compared to control conditions at 8 h. These inhibitory effects were achieved without altering cell respiration or cell growth. However, inhibitory effects decreased at late fermentation times, which suggest that these compounds delay choline metabolism rather than completely inhibiting TMA formation. Overall, caffeic acid, catechin and epicatechin were the most effective non-cytotoxic inhibitors of choline use and TMA production. Thus, these compounds are proposed as lead bioactives to test in vivo.


2021 ◽  
Author(s):  
Lisard Iglesias-Carres ◽  
Emily Krueger ◽  
Jacob Herring ◽  
Jeffery Tessem ◽  
Andrew Neilson

Trimethylamine N-oxide (TMAO) is a pro-atherosclerotic product of dietary choline metabolism generated by a microbiome-host axis. The first step in this pathway is enzymatic metabolism of choline to trimethylamine (TMA) by the gut microbiota. This reaction could be targeted to reduce atherosclerosis risk. We aimed to evaluate potential inhibitory effects of select dietary phenolics and their relevant gut microbial metabolites on TMA production via a human ex vivo-in vitro fermentation model. Various phenolics inhibited choline use and TMA production, especially larger compounds or their larger metabolites, without altering cell respiration or cell growth. However, inhibitory effects decreased at late fermentation times, which suggest that these compounds delay choline metabolism rather than completely inhibiting TMA formation. Overall, caffeic acid, catechin and epicatechin were the most effective non-cytotoxic inhibitors of choline use and TMA production. Thus, these compounds are proposed as lead bioactives to test in vivo.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2245
Author(s):  
Jue-Zong Yeh ◽  
Ding-Han Wang ◽  
Juin-Hong Cherng ◽  
Yi-Wen Wang ◽  
Gang-Yi Fan ◽  
...  

In spinal cord injury (SCI) therapy, glial scarring formed by activated astrocytes is a primary problem that needs to be solved to enhance axonal regeneration. In this study, we developed and used a collagen scaffold for glial scar replacement to create an appropriate environment in an SCI rat model and determined whether neural plasticity can be manipulated using this approach. We used four experimental groups, as follows: SCI-collagen scaffold, SCI control, normal spinal cord-collagen scaffold, and normal control. The collagen scaffold showed excellent in vitro and in vivo biocompatibility. Immunofluorescence staining revealed increased expression of neurofilament and fibronectin and reduced expression of glial fibrillary acidic protein and anti-chondroitin sulfate in the collagen scaffold-treated SCI rats at 1 and 4 weeks post-implantation compared with that in untreated SCI control. This indicates that the collagen scaffold implantation promoted neuronal survival and axonal growth within the injured site and prevented glial scar formation by controlling astrocyte production for their normal functioning. Our study highlights the feasibility of using the collagen scaffold in SCI repair. The collagen scaffold was found to exert beneficial effects on neuronal activity and may help in manipulating synaptic plasticity, implying its great potential for clinical application in SCI.


2011 ◽  
Vol 75 (3) ◽  
pp. 365-376 ◽  
Author(s):  
Eva Ogué-Bon ◽  
Christina Khoo ◽  
Lesley Hoyles ◽  
Anne L. McCartney ◽  
Glenn R. Gibson ◽  
...  

2021 ◽  
pp. 088532822110511
Author(s):  
Youbin Li ◽  
Shaochuan Wang ◽  
Shidan Li ◽  
Jun Fei

Implant-related infection is a disastrous complication. Surface modification of titanium is considered as an important strategy to prevent implant-related infection. However, there is no recognized surface modification strategy that can be applied in clinic so far. We explored a new strategy of coating. The clindamycin-loaded titanium was constructed by layer-by-layer self-assembly. The release of clindamycin from titanium was detected through high performance liquid chromatography. Different titanium was co-cultured with Staphylococcus aureus for 24 h in vitro, then the effect of different titanium on bacterial colonization and biofilm formation was determined by spread plate method and scanning electron microscopy. Cytotoxicity and cytocompatibility of clindamycin-loaded titanium on MC3T3-E1 cells were measured by CCK8. The antibacterial ability of clindamycin-loaded titanium in vivo was also evaluated using a rat model of osteomyelitis. The number of osteoclasts in bone defect was observed by tartrate-resistant acid phosphatase staining. Bacterial burden of surrounding tissues around the site of infection was calculated by tissue homogenate and colony count. Clindamycin-loaded titanium could release clindamycin slowly within 160 h. It reduced bacterial colonization by three orders of magnitude compare to control ( p < .05) and inhibits biofilm formation in vitro. Cells proliferation and adhesion were similar on three titanium surfaces ( p > .05). In vivo, clindamycin-loaded titanium improved bone healing, reduced microbial burden, and decreased the number of osteoclasts compared control titanium in the rat model of osteomyelitis. This study demonstrated that clindamycin-loaded titanium exhibited good biocompatibility, and showed antibacterial activity both in vivo and in vitro. It is promising and might have potential for clinical application.


2015 ◽  
Vol 40 (9) ◽  
pp. e35
Author(s):  
Caroline A. Hundepool ◽  
Liselotte F. Bulstra ◽  
Dimitra Kotsougiani ◽  
Steven Hovius ◽  
Allen Bishop ◽  
...  

2005 ◽  
Vol 288 (3) ◽  
pp. L536-L545 ◽  
Author(s):  
Jackeline Agorreta ◽  
Javier J. Zulueta ◽  
Luis M. Montuenga ◽  
Mercedes Garayoa

Adrenomedullin (ADM) is upregulated independently by hypoxia and LPS, two key factors in the pathogenesis of acute lung injury (ALI). This study evaluates the expression of ADM in ALI using experimental models combining both stimuli: an in vivo model of rats treated with LPS and acute normobaric hypoxia (9% O2) and an in vitro model of rat lung cell lines cultured with LPS and exposed to hypoxia (1% O2). ADM expression was analyzed by in situ hybridization, Northern blot, Western blot, and RIA analyses. In the rat lung, combination of hypoxia and LPS treatments overcomes ADM induction occurring after each treatment alone. With in situ techniques, the synergistic effect of both stimuli mainly correlates with ADM expression in inflammatory cells within blood vessels and, to a lesser extent, to cells in the lung parenchyma and bronchiolar epithelial cells. In the in vitro model, hypoxia and hypoxia + LPS treatments caused a similar strong induction of ADM expression and secretion in epithelial and endothelial cell lines. In alveolar macrophages, however, LPS-induced ADM expression and secretion were further increased by the concomitant exposure to hypoxia, thus paralleling the in vivo response. In conclusion, ADM expression is highly induced in a variety of key lung cell types in this rat model of ALI by combination of hypoxia and LPS, suggesting an essential role for this mediator in this syndrome.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1496
Author(s):  
Ji-Hyeon Jeon ◽  
Jaehyeok Lee ◽  
Jin-Hyang Park ◽  
Chul-Haeng Lee ◽  
Min-Koo Choi ◽  
...  

This study aims to investigate the effect of lactic acid bacteria (LAB) on in vitro and in vivo metabolism and the pharmacokinetics of ginsenosides in mice. When the in vitro fermentation test of RGE with LAB was carried out, protopanaxadiol (PPD) and protopanaxadiol (PPD), which are final metabolites of ginsenosides but not contained in RGE, were greatly increased. Compound K (CK), ginsenoside Rh1 (GRh1), and GRg3 also increased by about 30%. Other ginsenosides with a sugar number of more than 2 showed a gradual decrease by fermentation with LAB for 7 days, suggesting the involvement of LAB in the deglycosylation of ginsenosides. Incubation of single ginsenoside with LAB produced GRg3, CK, and PPD with the highest formation rate and GRd, GRh2, and GF with the lower rate among PPD-type ginsenosides. Among PPT-type ginsenosides, GRh1 and PPT had the highest formation rate. The amoxicillin pretreatment (20 mg/kg/day, twice a day for 3 days) resulted in a significant decrease in the fecal recovery of CK, PPD, and PPT through the blockade of deglycosylation of ginsenosides after single oral administrations of RGE (2 g/kg) in mice. The plasma concentrations of CK, PPD, and PPT were not detectable without change in GRb1, GRb2, and GRc in this group. LAB supplementation (1 billion CFU/2 g/kg/day for 1 week) after the amoxicillin treatment in mice restored the ginsenoside metabolism and the plasma concentrations of ginsenosides to the control level. In conclusion, the alterations in the gut microbiota environment could change the ginsenoside metabolism and plasma concentrations of ginsenosides. Therefore, the supplementation of LAB with oral administrations of RGE would help increase plasma concentrations of deglycosylated ginsenosides such as CK, PPD, and PPT.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Minsun Kim ◽  
MinBeom Kim ◽  
Jae-Hyun Kim ◽  
SooYeon Hong ◽  
Dong Hee Kim ◽  
...  

Osteoporosis is characterized by a decrease in bone microarchitecture with an increased risk of fracture. Long-term use of primary treatments, such as bisphosphonates and selective estrogen receptor modulators, results in various side effects. Therefore, it is necessary to develop alternative therapeutics derived from natural products. Crataegus pinnatifida Bunge (CPB) is a dried fruit used to treat diet-induced indigestion, loss of appetite, and diarrhea. However, research into the effects of CPB on osteoclast differentiation and osteoporosis is still limited. In vitro experiments were conducted to examine the effects of CPB on RANKL-induced osteoclast differentiation in RAW 264.7 cells. Moreover, we investigated the effects of CPB on bone loss in the femoral head in an ovariectomized rat model using microcomputed tomography. In vitro, tartrate-resistant acid phosphatase (TRAP) staining results showed the number of TRAP-positive cells, and TRAP activity significantly decreased following CPB treatment. CPB also significantly decreased pit formation. Furthermore, CPB inhibited osteoclast differentiation by suppressing NFATc1, and c-Fos expression. Moreover, CPB treatment inhibited osteoclast-related genes, such as Nfatc1, Ca2, Acp5, mmp9, CtsK, Oscar, and Atp6v0d2. In vivo, bone mineral density and structure model index were improved by administration of CPB. In conclusion, CPB prevented osteoclast differentiation in vitro and prevented bone loss in vivo. Therefore, CPB could be a potential alternative medicine for bone diseases, such as osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document