scholarly journals MRI correlates of cognitive improvement after home-based EEG neurofeedback training in patients with multiple sclerosis: a pilot study

Author(s):  
Daniela Pinter ◽  
Silvia Erika Kober ◽  
Viktoria Fruhwirth ◽  
Lisa Berger ◽  
Anna Damulina ◽  
...  

Abstract Objective Neurofeedback training may improve cognitive function in patients with neurological disorders. However, the underlying cerebral mechanisms of such improvements are poorly understood. Therefore, we aimed to investigate MRI correlates of cognitive improvement after EEG-based neurofeedback training in patients with MS (pwMS). Methods Fourteen pwMS underwent ten neurofeedback training sessions within 3–4 weeks at home using a tele-rehabilitation system. Half of the pwMS (N = 7, responders) learned to self-regulate sensorimotor rhythm (SMR, 12–15 Hz) by visual feedback and improved cognitively after training, whereas the remainder (non-responders, n = 7) did not. Diffusion-tensor imaging and resting-state fMRI of the brain was performed before and after training. We analyzed fractional anisotropy (FA) and functional connectivity (FC) of the default-mode, sensorimotor (SMN) and salience network (SAL). Results At baseline, responders and non-responders were comparable regarding sex, age, education, disease duration, physical and cognitive impairment, and MRI parameters. After training, compared to non-responders, responders showed increased FA and FC within the SAL and SMN. Cognitive improvement correlated with increased FC in SAL and a correlation trend with increased FA was observed. Conclusions This exploratory study suggests that successful neurofeedback training may not only lead to cognitive improvement, but also to increases in brain microstructure and functional connectivity.

2020 ◽  
Author(s):  
Jian Kong ◽  
Yiting Huang ◽  
Jiao Liu ◽  
Siyi Yu ◽  
Ming Cheng ◽  
...  

Abstract Background: This study aims to investigate the resting state functional connectivity (rsFC) changes of the hypothalamus in Fibromyalgia patients and the modulation effect of effective treatments. Methods: Fibromyalgia patients and matched healthy controls (HC’s) were recruited. Resting state fMRI data were collected from fibromyalgia patients before and after a 12-week Tai Chi intervention and once from HC’s. Results: Data analysis showed that fibromyalgia patients displayed significantly decreased medial hypothalamus (MH) rsFC with the thalamus and amygdala when compared to HC’s at baseline. After the intervention, fibromyalgia patients showed increased (normalized) MH rsFC in the thalamus and amygdala. Effective connectivity analysis showed disrupted MH and thalamus interaction in fibromyalgia, which nonetheless could be partially restored by Tai Chi. Conclusions: Elucidating the role of the diencephalon and limbic system in the pathophysiology and development of fibromyalgia may facilitate the development of new treatment methods for this prevalent disorder. Trial registration: Trial registration ClinicalTrials.gov Identifier: NCT02407665. Registered 3 April 2015 - Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT02407665


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Zhifeng Zhou ◽  
Jinping Xu ◽  
Leilei Shi ◽  
Xia Liu ◽  
Fen Hou ◽  
...  

Although evidence from studies on blind adults indicates that visual deprivation early in life leads to structural and functional disruption and reorganization of the brain, whether young blind people show similar patterns remains unknown. Therefore, this study is aimed at exploring the structural and functional alterations of the brain of early-blind adolescents (EBAs) compared to normal-sighted controls (NSCs) and investigating the effects of residual light perception on brain microstructure and function in EBAs. We obtained magnetic resonance imaging (MRI) data from 23 EBAs (8 with residual light perception (LPs), 15 without light perception (NLPs)) and 21 NSCs (age range 11-19 years old). Whole-brain voxel-based analyses of diffusion tensor imaging metrics and region-of-interest analyses of resting-state functional connectivity (RSFC) were performed to compare patterns of brain microstructure and the corresponding RSFC between the groups. The results showed that structural disruptions of LPs and NLPs were mainly located in the occipital visual pathway. Compared with NLPs, LPs showed increased fractional anisotropy (FA) in the superior frontal gyrus and reduced diffusivity in the caudate nucleus. Moreover, the correlations between FA of the occipital cortices or mean diffusivity of the lingual gyrus and age were consistent with the development trajectory of the brain in NSCs, but inconsistent or even opposite in EBAs. Additionally, we found functional, but not structural, reorganization in NLPs compared with NSCs, suggesting that functional neuroplasticity occurs earlier than structural neuroplasticity in EBAs. Altogether, these findings provided new insights into the mechanisms underlying the neural reorganization of the brain in adolescents with early visual deprivation.


2021 ◽  
Vol 15 ◽  
Author(s):  
Rafael Casas ◽  
Melissa Sandison ◽  
Diane Nichols ◽  
Kaelin Martin ◽  
Khue Phan ◽  
...  

We have developed a passive and lightweight wearable hand exoskeleton (HandSOME II) that improves range of motion and functional task practice in laboratory testing. For this longitudinal study, we recruited 15 individuals with chronic stroke and asked them to use the device at home for 1.5 h per weekday for 8 weeks. Subjects visited the clinic once per week to report progress and troubleshoot problems. Subjects were then given the HandSOME II for the next 3 months, and asked to continue to use it, but without any scheduled contact with the project team. Clinical evaluations and biomechanical testing was performed before and after the 8 week intervention and at the 3 month followup. EEG measures were taken before and after the 8 weeks of training to examine any recovery associated brain reorganization. Ten subjects completed the study. After 8 weeks of training, functional ability (Action Research Arm Test), flexor tone (Modified Ashworth Test), and real world use of the impaired limb (Motor Activity Log) improved significantly (p < 0.05). Gains in real world use were retained at the 3-month followup (p = 0.005). At both post-training and followup time points, biomechanical testing found significant gains in finger ROM and hand displacement in a reaching task (p < 0.05). Baseline functional connectivity correlated with gains in motor function, while changes in EEG functional connectivity paralleled changes in motor recovery. HandSOME II is a low-cost, home-based intervention that elicits brain plasticity and can improve functional motor outcomes in the chronic stroke population.


2020 ◽  
Author(s):  
Yunxuan Zheng ◽  
Danni Wang ◽  
Qun Ye ◽  
Futing Zou ◽  
Yao Li ◽  
...  

AbstractMetacognition as the capacity of monitoring one’s own cognition operates across domains. Here, we addressed whether metacognition in different cognitive domains rely on common or distinct neural substrates with combined diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) techniques. After acquiring DTI and resting-state fMRI data, we asked participants to perform a temporal-order memory task and a perceptual discrimination task, followed by trial-specific confidence judgments. DTI analysis revealed that the structural integrity (indexed by fractional anisotropy) in the anterior portion of right superior longitudinal fasciculus (SLF) was associated with both perceptual and mnemonic metacognitive abilities. Using perturbed mnemonic metacognitive scores produced by inhibiting the precuneus using TMS, the mnemonic metacognition scores did not correlate with individuals’ SLF structural integrity anymore, revealing the relevance of this tract in memory metacognition. In order to further verify the involvement of several cortical regions connected by SLF, we took the TMS-targeted precuneus region as a seed in a functional connectivity analysis and found the functional connectivity between precuneus and two SLF-connected regions (inferior parietal cortex and precentral gyrus) differentially mediated mnemonic but not perceptual metacognition performance. These results illustrate the importance of SLF and a putative white-matter grey-matter circuitry that supports human metacognition.


2018 ◽  
Author(s):  
Alican Nalci ◽  
Bhaskar D. Rao ◽  
Thomas T. Liu

AbstractIn resting-state fMRI, dynamic functional connectivity (DFC) measures are used to characterize temporal changes in the brain’s intrinsic functional connectivity. A widely used approach for DFC estimation is the computation of the sliding window correlation between blood oxygenation level dependent (BOLD) signals from different brain regions. Although the source of temporal fluctuations in DFC estimates remains largely unknown, there is growing evidence that they may reflect dynamic shifts between functional brain networks. At the same time, recent findings suggest that DFC estimates might be prone to the influence of nuisance factors such as the physiological modulation of the BOLD signal. Therefore, nuisance regression is used in many DFC studies to regress out the effects of nuisance terms prior to the computation of DFC estimates. In this work we examined the relationship between DFC estimates and nuisance factors. We found that DFC estimates were significantly correlated with temporal fluctuations in the magnitude (norm) of various nuisance regressors, with significant correlations observed in the majority (76%) of the cases examined. Significant correlations between the DFC estimates and nuisance regressor norms were found even when the underlying correlations between the nuisance and fMRI time courses were relatively small. We then show that nuisance regression does not eliminate the relationship between DFC estimates and nuisance norms, with significant correlations observed in the majority (71%) of the cases examined after nuisance regression. We present theoretical bounds on the difference between DFC estimates obtained before and after nuisance regression and relate these bounds to limitations in the efficacy of nuisance regression with regards to DFC estimates.


2017 ◽  
Vol 41 (S1) ◽  
pp. S551-S551
Author(s):  
R. Amodio ◽  
A. Prinster ◽  
A.M. Monteleone ◽  
F. Esposito ◽  
A. Canna ◽  
...  

IntroductionThe functional interplay between brain hemispheres is fundamental for behavioral, cognitive and emotional control. Several pathophysiological aspects of eating disorders (EDs) have been investigated by the use of functional Magnetic Resonance Imaging (fMRI).ObjectivesThe objective of the study was to investigate functional brain asymmetry of resting-state fMRI correlations in symptomatic patients with anorexia nervosa (AN) and bulimia nervosa (BN).AimsWe aimed at revealing whether brain regions implicated in reward, cognitive control, starvation and emotion regulation show altered inter-hemispheric functional connectivity in patients with AN and BN.MethodsUsing resting-state fMRI, voxel-mirrored homotopic connectivity (VMHC) and regional inter-hemispheric spectral coherence (IHSC) analyses in two canonical slow frequency bands (“Slow-5”, “Slow-4”) were studied in 15AN and 13BN patients and 16 healthy controls (HC). Using T1-weighted and diffusion tensor imaging MRI scans, regional VMHC values were correlated with the left-right asymmetry of corresponding homotopic gray matter volumes and with the white matter callosal fractional anisotropy (FA).ResultsCompared to HC, AN patients exhibited reduced VMHC in cerebellum, insula and precuneus, while BN patients showed reduced VMHC in dorso-lateral prefrontal and orbito-frontal cortices. The regional IHSC analysis highlighted that the inter-hemispheric functional connectivity was higher in the ‘Slow-5′Band in all regions except the insula. No group differences in left-right structural asymmetries and in VMHC vs callosal FA correlations were found.ConclusionsThese anomalies indicate that AN and BN, at least in their acute phase, are associated with a loss of inter-hemispheric connectivity in regions implicated in self-referential, cognitive control and reward processing.Disclosure of interestThe authors have not supplied their declaration of competing interest.


Author(s):  
Matthew J. Hoptman ◽  
Umit Tural ◽  
Kelvin O. Lim ◽  
Daniel C. Javitt ◽  
Lauren E. Oberlin

Schizophrenia is widely seen as a disorder of dysconnectivity. Neuroimaging studies have examined both structural and functional connectivity in the disorder, but these modalities have rarely been integrated directly. We scanned 29 patients with schizophrenia and 25 healthy control subjects and acquired resting state fMRI and diffusion tensor imaging. The Functional and Tractographic Connectivity Analysis Toolbox (FATCAT) was used to estimate functional and structural connectivity of the default mode network. Correlations between modalities were investigated, and multimodal connectivity scores (MCS) were created using principal components analysis. Nine of 28 possible region pairs showed consistent (>80%) tracts across participants. Correlations between modalities were found among those with schizophrenia for the prefrontal cortex, posterior cingulate, and lateral temporal lobes with frontal and parietal regions, consistent with frontotemporoparietal network involvement in the disorder. In patients, MCS values correlated with several aspects of the Positive and Negative Syndrome Scale, positively with those involving inwardly directed psychopathology, and negatively with those involving external psychopathology. In this preliminary sample, we found FATCAT to be a useful toolbox to directly integrate and examine connectivity between imaging modalities. A consideration of conjoint structural and functional connectivity can provide important information about the network mechanisms of schizophrenia.


Author(s):  
Matthew J. Hoptman ◽  
Umit Tural ◽  
Kelvin O. Lim ◽  
Daniel C. Javitt ◽  
Lauren E. Oberlin

Schizophrenia is widely seen as a disorder of dysconnectivity. Neuroimaging studies have examined both structural and functional connectivity in the disorder, but these modalities have rarely been integrated directly. We scanned 29 patients with schizophrenia and 25 healthy control subjects and acquired resting state fMRI and diffusion tensor imaging. The Functional and Tractographic Connectivity Analysis Toolbox (FATCAT) was used to estimate functional and structural connectivity of the default mode network. Correlations between modalities were investigated, and multimodal connectivity scores (MCS) were created using principal components analysis. Nine of 28 possible region pairs showed consistent (>80%) tracts across participants. Correlations between modalities were found among those with schizophrenia for the prefrontal cortex, posterior cingulate, and lateral temporal lobes with frontal and parietal regions, consistent with frontotemporoparietal network involvement in the disorder. In patients, MCS values correlated with several aspects of the Positive and Negative Syndrome Scale, positively with those involving inwardly directed psychopathology, and negatively with those involving external psychopathology. In this preliminary sample, we found FATCAT to be a useful toolbox to directly integrate and examine connectivity between imaging modalities. A consideration of conjoint structural and functional connectivity can provide important information about the network mechanisms of schizophrenia.


Sign in / Sign up

Export Citation Format

Share Document