scholarly journals The impact of axial length on retinal tamponade for gas, silicone oil, and heavy silicone oil, using an in vitro model

2010 ◽  
Vol 249 (5) ◽  
pp. 671-675 ◽  
Author(s):  
Roxane J. Hillier ◽  
Theodor Stappler ◽  
Rachel L. Williams ◽  
George S. Turner ◽  
David Wong
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Mustafa Magan ◽  
Emilia Wiechec ◽  
Karin Roberg

Abstract Background Head and neck squamous cell carcinoma (HNSCC) is a heterogeneous group of tumors for which the overall survival rate worldwide is around 60%. The tumor microenvironment, including cancer-associated fibroblasts (CAFs), is believed to affect the treatment response and migration of HNSCC. The aim of this study was to create a biologically relevant HNSCC in vitro model consisting of both tumor cells and CAFs cultured in 3D to establish predictive biomarkers for treatment response, as well as to investigate the impact of CAFs on phenotype, proliferation and treatment response in HNSCC cells. Methods Three different HNSCC patient-derived tumor cell lines were cultured with and without CAFs in a 3D model. Immunohistochemistry of the proliferation marker Ki67, epidermal growth factor receptor (EGFR) and fibronectin and a TUNEL-assay were performed to analyze the effect of CAFs on both tumor cell proliferation and response to cisplatin and cetuximab treatment in tumor spheroids (3D). mRNA expression of epithelial-mesenchymal transition (EMT) and cancer stem cells markers were analyzed using qRT-PCR. Results The results demonstrated increased cell proliferation within the tumor spheroids in the presence of CAFs, correlating with increased expression of EGFR. In spheroids with increased expression of EGFR, a potentiated response to cetuximab treatment was observed. Surprisingly, an increase in Ki67 expressing tumor cells were observed in spheroids treated with cisplatin for 3 days, correlating with increased expression of EGFR. Furthermore, tumor cells co-cultured with CAFs presented an increased EMT phenotype compared to tumor cells cultured alone in 3D. Conclusion Taken together, our results reveal increased cell proliferation and elevated expression of EGFR in HNSCC tumor spheroids in the presence of CAFs. These results, together with the altered EMT phenotype, may influence the response to cetuximab or cisplatin treatment.


2012 ◽  
Vol 3 (3) ◽  
pp. 229-236 ◽  
Author(s):  
M. Hatanaka ◽  
Y. Nakamura ◽  
A.J.H. Maathuis ◽  
K. Venema ◽  
I. Murota ◽  
...  

Survival and germination rate of Bacillus subtilis C-3102 spores were investigated in a stomach and small intestine model (TIM-1), while the impact of C-3102 cells that had passed through TIM-1 on human colon microbiota was evaluated in a model of the large intestine (TIM-2). The survival of C-3102 spores in TIM-1 was 99%; 8% of the spores had germinated. Effluent of TIM-1 was subsequently introduced into TIM-2 and a micro-array platform was employed to assess changes in the microbiota composition. The effluent, which contained germinated C-3102 cells, increased some Bifidobacterium species and decreased some Clostridium groups. These changes were greater compared to those obtained by adding C-3102 spores directly to TIM-2. The present study suggests that oral doses of B. subtilis C-3102 spores have the potential to modulate the human colon microbiota. This effect may be caused by germination of the spores in the gastrointestinal tract.


2019 ◽  
Vol 305 ◽  
pp. 94-102 ◽  
Author(s):  
Anthony Verdin ◽  
Fabrice Cazier ◽  
Richard Fitoussi ◽  
Natacha Blanchet ◽  
Katell Vié ◽  
...  

2020 ◽  
Vol 31 ◽  
pp. S1050
Author(s):  
M. Perez-Leal ◽  
J.A. Perez Fidalgo ◽  
C. Sanz ◽  
J. Poveda ◽  
J. Milara ◽  
...  

2006 ◽  
Vol 5 (3) ◽  
pp. 243-250 ◽  
Author(s):  
Richard M. Hall ◽  
Robert J. Oakland ◽  
Ruth K. Wilcox ◽  
David C. Barton

Object The purpose of the study was to develop an in vitro model of the bone fragment and spinal cord interactions that occur during a burst fracture and further the understanding of how the velocity of the bone fragment and the status of the posterior longitudinal ligament (PLL) affect the deformation of the cord. Methods An in vitro model was developed such that high-speed video and pressure measurements recorded the impact of a simulated bone fragment on sections of explanted bovine spinal cord. The model simulated the PLL and the posterior elements. The status of the PLL had a significant effect on both the maximum occlusion of the spinal cord and the time for occlusion to occur. Raising the fragment velocity led to an overall increase in the spinal cord deformation. Interestingly the dura mater appeared to have little or no effect on the extent of occlusion. Conclusions These findings may indicate the importance of the dura’s interaction with the cerebrospinal fluid in protecting the cord during this type of impact.


PLoS ONE ◽  
2011 ◽  
Vol 6 (9) ◽  
pp. e25789 ◽  
Author(s):  
Zania Stamataki ◽  
Samantha Tilakaratne ◽  
David H. Adams ◽  
Jane A. McKeating

Toxins ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 230
Author(s):  
Cassandra Pouget ◽  
Claude-Alexandre Gustave ◽  
Christelle Ngba-Essebe ◽  
Frédéric Laurent ◽  
Emmanuel Lemichez ◽  
...  

Staphylococcus aureus is the most prevalent pathogen isolated from diabetic foot infections (DFIs). The purpose of this study was to evaluate its behavior in an in vitro model mimicking the conditions encountered in DFI. Four clinical S. aureus strains were cultivated for 16 weeks in a specific environment based on the wound-like medium biofilm model. The adaptation of isolates was evaluated as follows: by Caenorhabditis elegans model (to evaluate virulence); by quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) (to evaluate expression of the main virulence genes); and by Biofilm Ring test® (to assess the biofilm formation). After 16 weeks, the four S. aureus had adapted their metabolism, with the development of small colony variants and the loss of b-hemolysin expression. The in vivo nematode model suggested a decrease of virulence, confirmed by qRT-PCRs, showing a significant decrease of expression of the main staphylococcal virulence genes tested, notably the toxin-encoding genes. An increased expression of genes involved in adhesion and biofilm was noted. Our data based on an in vitro model confirm the impact of environment on the adaptation switch of S. aureus to prolonged stress environmental conditions. These results contribute to explore and characterize the virulence of S. aureus in chronic wounds.


2021 ◽  
Author(s):  
Talita B Gagliardi ◽  
Monty E Goldstein ◽  
Daniel Song ◽  
Kelsey M Gray ◽  
Jae W Jung ◽  
...  

The clinical impact of rhinovirus C (RV-C) is well-documented; yet the viral life cycle remains poorly defined. Thus, we characterized RV-C15 replication at the single-cell level and its impact on the human airway epithelium (HAE) using a physiologically-relevant in vitro model. RV-C15 replication was restricted to ciliated cells where viral RNA levels peaked at 12 hours post-infection (hpi), correlating with elevated titers in the apical compartment at 24 hpi. Notably, infection was associated with a loss of polarized expression of the RV-C receptor, cadherin-related family member 3. Visualization of double-stranded RNA (dsRNA) during RV-C15 replication revealed two distinct replication complex arrangements within the cell, likely corresponding to different time points in infection and correlating with the formation of large intracellular vesicles. To further define RV-C15 replication sites, we analyzed the expression of giantin, phosphatidylinositol-4-phosphate, and calnexin, as well as the colocalization of these markers with dsRNA. Fluorescence levels of all three cellular markers were elevated during infection and altered giantin distribution further indicated Golgi fragmentation. However, unlike previously characterized RVs, the high ratio of calnexin-dsRNA colocalization implicated the endoplasmic reticulum as the primary site for RV-C15 replication in HAE. RV-C15 infection was also associated with elevated stimulator of interferon genes (STING) expression, facilitating replication, and the induction of incomplete autophagy, a mechanism used by other RVs to promote non-lytic release of progeny virions. Finally, RV-C15 infection resulted in a temporary loss in epithelial barrier integrity and the translocation of tight junction proteins while a reduction in mucociliary clearance indicated cytopathic effects on epithelial function. Together, our findings identify both shared and unique features of RV-C replication compared to related rhinoviruses and define the impact of RV-C on both epithelial cell organization and tissue functionality - aspects of infection that may contribute to pathogenesis in vivo.


2010 ◽  
Vol 4 (8) ◽  
pp. 590-599 ◽  
Author(s):  
Heenam Kwon ◽  
Hyeon Joo Kim ◽  
William L. Rice ◽  
Balajikarthick Subramanian ◽  
Sang-Hyug Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document