CD9-positive cells in the intermediate lobe migrate into the anterior lobe to supply endocrine cells

Author(s):  
K. Horiguchi ◽  
K. Fujiwara ◽  
T. Tsukada ◽  
T. Nakakura ◽  
S. Yoshida ◽  
...  
1985 ◽  
Vol 101 (1) ◽  
pp. 305-311 ◽  
Author(s):  
P Kristensen ◽  
L S Nielsen ◽  
J Grøndahl-Hansen ◽  
P B Andresen ◽  
L I Larsson ◽  
...  

We immunocytochemically stained rat pituitary glands using antibodies against plasminogen activators of the tissue type (t-PA) and the urokinase type (u-PA). A large population of endocrine cells in the anterior lobe of the gland displayed intense cytoplasmic immunoreactivity with anti-t-PA. In some areas of the intermediate lobe we found a weak staining, and we observed weakly staining granular structures in the posterior lobe. Controls included absorption of the antibodies with highly purified t-PA. In addition, SDS PAGE followed by immunoblotting of pituitary gland extracts revealed only one band with an electrophoretic mobility similar to that of t-PA when stained with anti-t-PA IgG. No u-PA immunoreactivity was detected in the rat pituitary gland. Sequential staining experiments using antibodies against growth hormone and t-PA demonstrated that the t-PA-immunoreactive cells constitute a large subpopulation of the growth hormone-containing cells. These findings represent the first direct evidence for the presence of t-PA in cell types other than endothelial cells in the intact normal organism. In this article we discuss the implications of the results for a possible role of t-PA in the posttranslational processing of prohormones.


2002 ◽  
Vol 175 (3) ◽  
pp. 649-661 ◽  
Author(s):  
R Hnasko ◽  
M McFarland ◽  
N Ben-Jonathan

Plasmalemma vesicle protein-1 (PV-1) is an integral membrane protein associated with endothelial cell caveolae and fenestrae. Since endocrine glands are enriched with fenestrated endothelium, we examined the distribution of PV-1 mRNA and protein in endocrine glands and determined its cellular localization. A single transcript was detected by RT-PCR in all endocrine glands examined. A synthetic peptide was used to generate antibodies for Western blotting and immunohistochemistry (IHC). Western blotting of membrane fractions from lung, pituitary, adrenal, testis and PV-1-transfected Cos-1 cells revealed a major 65 kDa protein. This protein binds to heparin with high affinity. Using IHC, PV-1 was localized to both endothelial cells of the adrenal zona reticularis and chromaffin cells of the medulla. In the pancreas, PV-1 expression was restricted to a few cells in the islets of Langerhans that partially overlap with somatostatin-positive delta-cells. In both neonatal and adult pituitaries, strong PV-1 immunoreactivity was detected in neural lobe pituicytes in a pattern similar to that of glial fibrillary acidic protein (GFAP). PV-1 and GFAP expression was seen in the adult, but not neonatal, intermediate lobe. Endothelial cells throughout the neonatal anterior lobe were PV-1 positive, but PV-1 in the adult was restricted to some endothelial and endocrine cells localized near the margins of lobe. In the adult testis, strong PV-1 expression was seen in germ cells within the seminiferous tubules that varied with the stage of spermatogenesis. In contrast, PV-1 in the neonatal testis was localized to the interstitial cells but not seminiferous tubules. In the ovary, PV-1 was expressed in stromal endothelial cells as well as the thecal layer of developing follicles. Over half the corpus luteal cells were positive for PV-1. Our data have shown that PV-1 is not restricted to endothelial cells but is localized in many types of endocrine and non-endocrine cells. Furthermore, PV-1 expression in the pituitary and testis is developmentally regulated.


1942 ◽  
Vol s2-83 (331) ◽  
pp. 299-316
Author(s):  
T. KERR

1. A general description is given of the pituitary of the perch (Perca fluviatilis L.), and histological details of its various parts. The subdivisions of the glandular component are confluent with each other but distinguished by their different cell types. The nervous lobe makes contact with all three of the subdivisions, but is separated from them by a layer of connective tissue, incomplete in particular areas. 2. The anterior glandular region (anterior lobe) has an anterior chromophil and a posterior chromophobe zone. The middle glandular region (transitional lobe) possesses brightly staining acidophils and basophils as well as chromophobes. The acidophils form a dorsal sheet, deeply indented by processes of the nervous lobe, the basophils lie ventrally and posteriorly, and chromophobes are common towards the extremities of the indentations. The posterior glandular region (intermediate lobe) is elaborately penetrated by nervous lobe processes; the cells are small and consist of amphiphils, dull basophils, and occasional dull acidophils. The possible homologies of these regions to the lobes of higher types are discussed. The nervous lobe is of loose glial tissue with many nuclei and blood vessels and some reticular and collagenous fibres. 3. Strongly acidophil spheres of various sizes and in various numbers occur in the middle glandular region. They originate in ‘sphere cells’ resembling eosinophil leucocytes and after enlarging become free in the tissues of the region. Later they appear to pass into the posterior processes of the nervous lobe to be the larger bodies of the Herring material. Finally these larger elements appear to break down to form a fine granulation, whose further fate could not be followed.


1970 ◽  
Vol 18 (6) ◽  
pp. 450-454 ◽  
Author(s):  
ALICE E. SWOPE ◽  
RAYMOND H. KAHN ◽  
JAMES L. CONKLIN

The peroxidase-labeled antibody (P-Ab) technique was compared on adjacent sections with a permanganate-Alcian Blue (AB)-aldehyde fuchsin (AF) procedure on the anterior pituitary gland of young adult, female rats. The cells that stained with both AB and AF (AB, AF+) were large and polygonal and frequently possessed long processes; these cells correspond to those which reacted with the TSH antibody. The cells that stained only with AF reacted with the FSH antibody in the P-Ab technique and the cells which reacted with the LH antibody were not stained with either AB or AF.AB,AF+ cells ("TSH" cells) were distributed throughout the anterior lobe except along the lateral and dorsal peripheries of the gland and adjacent to the intermediate lobe, while both the AF+ ("FSH" cells) and the "LH" cells were distributed throughout the anterior lobe.


1983 ◽  
Vol 97 (4) ◽  
pp. 1029-1037 ◽  
Author(s):  
A Granelli-Piperno ◽  
E Reich

We studied plasminogen activator (PA) of the rat pituitary gland in organ and cell monolayer culture. Both anterior and intermediate lobes contain, synthesize and secrete a mixture consisting of the two known types of PA: urokinase and so-called tissue PA. Both enzymes were formed essentially by all PA secreting cells, and PA was identified specifically in mammotrophs, corticotrophs, and luteinizing hormone containing gonadotrophs. Pituitary PA production was modulated on exposure to a variety of biological effectors: anterior lobe PA secretion was stimulated by agents that raised intracellular cAMP concentration; his process depended on de novo enzyme synthesis. Enzyme production was repressed by androgens and glucocorticoids. When anterior lobe cultures were maintained in plasminogen-free media, the extracellular, secreted forms of ACTH consisted almost exclusively of the high molecular weight forms (31,000 and 23,000); the smaller forms (13,000 and 4,500) were also found in the extracellular medium of cultures supplemented with plasminogen. In contrast, the size distribution of intracellular ACTH species was unaffected by the presence of plasminogen. These results resemble those previously obtained with pancreatic islets and are consistent with the possibility that plasmin, generated by PA secretion, participates in prohormone processing. PA synthesis in intermediate lobe explants was stimulated by exposure to dibutyryl cAMP, and repressed by hydrocortisone. In accordance with the dopaminergic control of intermediate lobe function in some vertebrates, apomorphine strongly repressed PA synthesis in intermediate, but not anterior lobe cultures.


1986 ◽  
Vol 235 (3) ◽  
pp. 715-722 ◽  
Author(s):  
M Fenger

The occurrence of intermediates from the processing of ACTH-(1-39) [adrenocorticotropic hormone-(1-39)] to alpha-melanocyte-stimulating hormone was investigated in normal pig pituitaries by the use of sensitive and specific radioimmunoassays for ACTH-(1-13), ACTH-(1-14), ACTH-(1-13)-NH2 and ACTH-(1-39). Fractionation by reverse-phase h.p.l.c. revealed ACTH(1-17) and their acetylated analogues. The intermediate lobe contained NO-diacetyl-ACTH-(1-13)-NH2, N-acetyl-ACTH-(1-13)-NH2 and ACTH-(1-13)-NH2. In addition, the corresponding ACTH-(1-14) peptides (the glycine-extended precursor of the amidated peptides) were detected in lower amounts in both the intermediate lobe and the anterior lobe. ACTH-(1-17), ACTH-(1-13) and their acetylated analogues could not be detected in the anterior lobe or the intermediate lobe. The results suggest that an endopeptidase initially cleaves ACTH-(1-39) at the Lys-16-Arg-17 bond. ACTH-(1-16) is then processed by a pituitary carboxypeptidase to ACTH-(1-14) and ACTH-(17-39) by the aminopeptidase to ACTH-(18-39).


2010 ◽  
Vol 24 (9) ◽  
pp. 1835-1845 ◽  
Author(s):  
Audrey Roussel-Gervais ◽  
Steve Bilodeau ◽  
Sophie Vallette ◽  
France Berthelet ◽  
André Lacroix ◽  
...  

Abstract Cushing’s disease is caused by glucocorticoid-resistant pituitary corticotroph adenomas. We have previously identified the loss of nuclear Brg1 as one mechanism that may lead to partial glucocorticoid resistance: this loss is observed in about 33% of human corticotroph adenomas. We now show that Brg1 loss of function correlates with cyclin E expression in corticotroph adenomas and with loss of the cell cycle inhibitor p27Kip1 expression. Because Brg1 is thought to have tumor suppressor activity, the present study was undertaken to understand the putative contribution of cyclin E derepression produced by loss of Brg1 expression on adenoma development. Overexpression of cyclin E in pituitary proopiomelanocortin cells leads to abnormal reentry into cell cycle of differentiated proopiomelanocortin cells and to centrosome instability. These alterations are consistent with the intermediate lobe hyperplasia and anterior lobe adenomas that were observed in these pituitaries. When combined with the p27Kip1 knockout, overexpression of cyclin E increased the incidence of pituitary tumors, their size, and their proliferation index. These results suggest that cyclin E up-regulation and p27Kip1 loss-of-function act cooperatively on pituitary adenoma development.


1996 ◽  
Vol 148 (2) ◽  
pp. 193-196 ◽  
Author(s):  
T Pawełczyk ◽  
M Pawlikowski ◽  
J Kunert-Radek

Abstract The effect of TRH on cell proliferation in the anterior lobe of the pituitary is well known and documented. On the other hand, there are no data on the effects of TRH on the intermediate lobe of the pituitary gland. The aim of this study was to investigate the effect of TRH and its analogues (pGlu-His-Gly, pGlu-His-Gly-NH2) on cell proliferation in the intermediate pituitary lobe. The bromodeoxyuridine technique was used to detect the proliferating cells. It was found that TRH stimulated cell proliferation 24 h after a single injection at a dose of 100 μg/kg body weight. The TRH analogues did not exert any significant stimulatory effect either 12 h or 24 h after the injection. The second experiment was carried out to distinguish the probable mechanism of the action of TRH. The effects of TSH and prolactin (PRL) on intermediate lobe cell proliferation were examined. It was found that both PRL and TSH exerted a significant stimulatory effect 24 h after a single s.c. injection of PRL at a dose of 150 IU/kg body weight or TSH at a dose 20 IU/kg body weight. It therefore appears that the stimulatory effect of TRH on intermediate pituitary lobe cell proliferation is mediated by PRL and TSH. Journal of Endocrinology (1996) 148, 193–196


1995 ◽  
Vol 132 (2) ◽  
pp. 223-228 ◽  
Author(s):  
Andreas Kjær ◽  
Ulrich Knigge ◽  
Steen Matzen ◽  
Jørgen Warberg

Kjær A, Knigge U, Matzen S, Warberg J. β-Adrenergic receptors are involved in histamine-induced secretion of proopiomelanocortin-derived peptides and prolactin in rats. Eur J Endocrinol 1995;132: 223–8. ISSN 0804–4643 The neurotransmitter histamine (HA) is involved in central regulation of secretion of prolactin (PRL) and the proopiomelanocortin (POMC)-derived peptides adrenocorticotropin (ACTH), β-endorphin (β-END) and α-melanocyte-stimulating hormone (α-MSH). The effect of HA on POMC-derived peptides and PRL release is, at least in part, indirect and may involve activation of catecholaminergic systems. Therefore, we investigated the effect of β-adrenergic receptor blockade on HA or HA agonist-induced release of ACTH, β-END, α-MSH and PRL. Central administration of HA, the H1-receptor agonist 2-thiazolylethylamine (2-TEA) or the H2-receptor agonist 4-methylhistamine (4-MeHA) stimulated the secretion of ACTH, β-END, α-MSH and PRL. Pretreatment with the β-adrenergic antagonist propranolol inhibited secretion of the POMC peptides in response to HA, 2-TEA or 4-MeHA. Propranonol only inhibited the PRL response to HA or 2-TEA, but had no effect on the PRL response to 4-MeHA. Administration of the β-receptor agonist isoproterenol stimulated ACTH, β-END, α-MSH and PRL two to five-fold. This effect was totally blocked by pretreatment with propranolol. We conclude that HA-induced secretion of POMC-derived peptides from the anterior and intermediate lobe of the pituitary gland and of PRL from the anterior lobe is, at least in part, mediated via catecholamines. β-Adrenergic receptors are involved in the mediation of the POMC response to H1- as well as H2-receptor activation, whereas β-receptors are involved only in the mediation of the PRL response to H1-receptor activation. Andreas Kjær, Department of Medical Physiology, Division of Endocrinology and Metabolism, The Panum Institute (Building 12.3), University of Copenhagen, Blegdamsvej 3c, DK-2200 Copenhagen N, Denmark


2006 ◽  
Vol 290 (5) ◽  
pp. R1309-R1323 ◽  
Author(s):  
Michael T. Sellix ◽  
Marcel Egli ◽  
Maristela O. Poletini ◽  
De'Nise T. McKee ◽  
Matthew D. Bosworth ◽  
...  

Oscillations of gene expression and physiological activity in suprachiasmatic nucleus (SCN) neurons result from autoregulatory feedback loops of circadian clock gene transcription factors. In the present experiment, we have determined the pattern of PERIOD1 (PER1), PERIOD2 (PER2), and CLOCK expression within neuroendocrine dopaminergic (DAergic) neurons (NDNs) of ovariectomized (OVX) rats. We have also determined the effects of per1, per2, and clock mRNA knockdown in the SCN with antisense deoxyoligonucleotides (AS-ODN) on DA release from NDNs. Diurnal rhythms of PER1 and PER2 expression in tuberoinfundibular DAergic (TIDA) and periventricular hypophyseal DAergic (PHDA) neurons, peaked at circadian time (CT)18 and CT12, respectively. Rhythms of PER1 expression in tuberhypophyseal neuroendocrine DAergic (THDA) neurons were undetectable. Rhythms of PER2 expression were found in all three populations of NDNs, with greater levels of PER2 expression between CT6 and CT12. AS-ODN injections differentially affected DA turnover in the axon terminals of the median eminence (ME), neural lobe (NL) and intermediate lobe (IL) of the pituitary gland, resulting in a significant decrease in DA release in the early subjective night in the ME (TIDA), a significant increase in DA release at the beginning of the day in the IL (PHDA), and no effect in the NL (THDA). AS-ODN-treatment induced a rhythm of DA concentration in the anterior lobe, with greater DA levels in the middle of the day. These data suggest that clock gene expression, particularly PER1 and PER2, within NDNs may act to modulate diurnal rhythms of DA release from NDNs in the OVX rat.


Sign in / Sign up

Export Citation Format

Share Document