scholarly journals The (pro)renin receptor (ATP6ap2) facilitates receptor-mediated endocytosis and lysosomal function in the renal proximal tubule

Author(s):  
Marta Figueiredo ◽  
Arezoo Daryadel ◽  
Gabin Sihn ◽  
Dominik N. Müller ◽  
Elena Popova ◽  
...  

AbstractThe ATP6ap2 (Pro)renin receptor protein associates with H+-ATPases which regulate organellar, cellular, and systemic acid–base homeostasis. In the kidney, ATP6ap2 colocalizes with H+-ATPases in various cell types including the cells of the proximal tubule. There, H+-ATPases are involved in receptor-mediated endocytosis of low molecular weight proteins via the megalin/cubilin receptors. To study ATP6ap2 function in the proximal tubule, we used an inducible shRNA Atp6ap2 knockdown rat model (Kd) and an inducible kidney-specific Atp6ap2 knockout mouse model. Both animal lines showed higher proteinuria with elevated albumin, vitamin D binding protein, and procathepsin B in urine. Endocytosis of an injected fluid-phase marker (FITC- dextran, 10 kDa) was normal whereas processing of recombinant transferrin, a marker for receptor-mediated endocytosis, to lysosomes was delayed. While megalin and cubilin expression was unchanged, abundance of several subunits of the H+-ATPase involved in receptor-mediated endocytosis was reduced. Lysosomal integrity and H+-ATPase function are associated with mTOR signaling. In ATP6ap2, KO mice mTOR and phospho-mTOR appeared normal but increased abundance of the LC3-B subunit of the autophagosome was observed suggesting a more generalized impairment of lysosomal function in the absence of ATP6ap2. Hence, our data suggests a role for ATP6ap2 for proximal tubule function in the kidney with a defect in receptor-mediated endocytosis in mice and rats.

Blood ◽  
1999 ◽  
Vol 93 (11) ◽  
pp. 4011-4018
Author(s):  
Maikel P. Peppelenbosch ◽  
Marjory DeSmedt ◽  
Tessa ten Hove ◽  
Sander J.H. van Deventer ◽  
Johan Grooten

Lipopolysaccharide (LPS) is a mediator of inflammation and septic shock during bacterial infection. Although monocytes and macrophages are highly responsive to LPS, the biological effects of LPS in these cell types are only partially understood. We decided, therefore, to investigate the influence of LPS on macrophage pinocytosis and Fc receptor–mediated endocytosis, two prominent and related macrophage effector functions. We observed that LPS did not greatly influence endocytosis in either macrophages or monocytes, but did exert a dual action on pinocytosis: at lower concentrations (0.1 to 100 ng/mL), LPS caused a decrease in pinocytosis in both macrophages and monocytes, whereas at higher LPS concentrations, enhanced pinocytosis in macrophages was observed. Detoxified LPS was two orders of magnitude less potent in producing these effects. After inhibition of the LPS receptor CD14, the LPS-induced decrease in pinocytosis was absent, and stimulation of pinocytosis at lower LPS concentrations was unmasked. We conclude that LPS can influence pinocytosis via CD14-dependent and CD14-independent signaling pathways. Furthermore, as addition of LPS to macrophages effected pinocytosis but not Fc receptor–mediated endocytosis, these two processes are independently regulated in macrophages.


1995 ◽  
Vol 268 (5) ◽  
pp. F899-F906 ◽  
Author(s):  
M. Gekle ◽  
S. Mildenberger ◽  
R. Freudinger ◽  
S. Silbernagl

In this study, we investigated the effects of endosomal alkalinization on kinetics of endocytotic uptake in intact proximal tubule-derived opossum kidney cells. We used fluorescein isothiocyanate (FITC)-labeled albumin and FITC-dextran as endocytotic substrates for receptor-mediated endocytosis and fluid-phase endocytosis, respectively. The pH in endosomes labeled with either FITC-albumin or FITC-dextran rose in the presence of the vacuolar-type ATPase inhibitor, bafilomycin A1, and in the presence of NH4Cl. Cytoplasmic pH, decreased in the presence of bafilomycin A1, but was not significantly different from control during prolonged exposure of the cells to NH4Cl. Endocytotic uptake of FITC-dextran was not affected by endosomal pH changes. Endocytotic uptake of FITC-albumin was reduced markedly by bafilomycin A1 (decrease of maximum transport rate and apparent affinity). Selective alkalinization of endosomes using NH4Cl (i.e., with the cytoplasmic pH not different from control) reduced FITC-albumin uptake in a similar way but to a lesser extent than did bafilomycin A1. Intracellular albumin degradation was impaired by bafilomycin A1 and NH4Cl. Prevention of endosome-lysosome fusion (lowering the temperature to 20 degrees C) abolished the effects of endosomal alkalinization. Furthermore, specific binding of albumin to the plasma membrane was reduced after incubation with bafilomycin A1, indicating an impairment of receptor recycling. These data show that endosomal pH is an important determinant for the kinetics of receptor-mediated endocytotic uptake of albumin in the proximal tubule but not for fluid-phase endocytosis. Endosomal alkalinization disturbs intracellular ligand handling and receptor trafficking, leading to a reduction of endocytotic capacity and affinity.


2007 ◽  
Vol 293 (1) ◽  
pp. C367-C378 ◽  
Author(s):  
Xiao C. Li ◽  
Jia L. Zhuo

Receptor-mediated endocytosis of extracellular ANG II has been suggested to play an important role in the regulation of proximal tubule cell (PTC) function. Using immortalized rabbit PTCs as an in vitro cell culture model, we tested the hypothesis that extracellular ANG II is taken up by PTCs through angiotensin type 1 receptor (AT1; or AT1a) receptor-mediated endocytosis and that inhibition of ANG II endocytosis using a selective AT1 receptor small-interfering RNA (siRNA; AT1R siRNA) or endocytotic inhibitors exerts a physiological effect on total and apical sodium and hydrogen exchanger isoform 3 (NHE-3) protein abundance. Western blots and live cell imaging with FITC-labeled ANG II confirmed that transfection of PTCs with a human specific AT1R siRNA for 48 h selectively knocked down AT1 receptor protein by 76 ± 5% ( P < 0.01), whereas transfection with a scrambled siRNA had little effect. In nontransfected PTCs, exposure to extracellular ANG II (1 nM) for 60 min at 37°C increased intracellular ANG II accumulation by 67% (control: 566 ± 55 vs. ANG II: 943 ± 160 pg/mg protein, P < 0.05) and induced mitogen-activated protein kinase extracellular signal-regulated kinase (ERK) 1/2 phosphorylation (163 ± 15% of control, P < 0.01). AT1R siRNA reduced ANG II endocytosis to a level similar to losartan, which blocks cell surface AT1 receptors (557 ± 37 pg/mg protein, P < 0.05 vs. ANG II), or to colchicine, which disrupts cytoskeleton microtubules (613 ± 12 pg/mg protein, P < 0.05 vs. ANG II). AT1R siRNA, losartan, and colchicine all attenuated ANG II-induced ERK1/2 activation and total cell lysate and apical membrane NHE-3 abundance. The scrambled siRNA had no effect on ANG II endocytosis, ERK1/2 activation, or NHE-3 expression. These results suggest that AT1 receptor-mediated endocytosis of extracellular ANG II may regulate proximal tubule sodium transport by increasing total and apical NHE-3 proteins.


Blood ◽  
1999 ◽  
Vol 93 (11) ◽  
pp. 4011-4018 ◽  
Author(s):  
Maikel P. Peppelenbosch ◽  
Marjory DeSmedt ◽  
Tessa ten Hove ◽  
Sander J.H. van Deventer ◽  
Johan Grooten

Abstract Lipopolysaccharide (LPS) is a mediator of inflammation and septic shock during bacterial infection. Although monocytes and macrophages are highly responsive to LPS, the biological effects of LPS in these cell types are only partially understood. We decided, therefore, to investigate the influence of LPS on macrophage pinocytosis and Fc receptor–mediated endocytosis, two prominent and related macrophage effector functions. We observed that LPS did not greatly influence endocytosis in either macrophages or monocytes, but did exert a dual action on pinocytosis: at lower concentrations (0.1 to 100 ng/mL), LPS caused a decrease in pinocytosis in both macrophages and monocytes, whereas at higher LPS concentrations, enhanced pinocytosis in macrophages was observed. Detoxified LPS was two orders of magnitude less potent in producing these effects. After inhibition of the LPS receptor CD14, the LPS-induced decrease in pinocytosis was absent, and stimulation of pinocytosis at lower LPS concentrations was unmasked. We conclude that LPS can influence pinocytosis via CD14-dependent and CD14-independent signaling pathways. Furthermore, as addition of LPS to macrophages effected pinocytosis but not Fc receptor–mediated endocytosis, these two processes are independently regulated in macrophages.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wiruntita Chankeaw ◽  
Sandra Lignier ◽  
Christophe Richard ◽  
Theodoros Ntallaris ◽  
Mariam Raliou ◽  
...  

Abstract Background A number of studies have examined mRNA expression profiles of bovine endometrium at estrus and around the peri-implantation period of pregnancy. However, to date, these studies have been performed on the whole endometrium which is a complex tissue. Consequently, the knowledge of cell-specific gene expression, when analysis performed with whole endometrium, is still weak and obviously limits the relevance of the results of gene expression studies. Thus, the aim of this study was to characterize specific transcriptome of the three main cell-types of the bovine endometrium at day-15 of the estrus cycle. Results In the RNA-Seq analysis, the number of expressed genes detected over 10 transcripts per million was 6622, 7814 and 8242 for LE, GE and ST respectively. ST expressed exclusively 1236 genes while only 551 transcripts were specific to the GE and 330 specific to LE. For ST, over-represented biological processes included many regulation processes and response to stimulus, cell communication and cell adhesion, extracellular matrix organization as well as developmental process. For GE, cilium organization, cilium movement, protein localization to cilium and microtubule-based process were the only four main biological processes enriched. For LE, over-represented biological processes were enzyme linked receptor protein signaling pathway, cell-substrate adhesion and circulatory system process. Conclusion The data show that each endometrial cell-type has a distinct molecular signature and provide a significantly improved overview on the biological process supported by specific cell-types. The most interesting result is that stromal cells express more genes than the two epithelial types and are associated with a greater number of pathways and ontology terms.


1982 ◽  
Vol 155 (1) ◽  
pp. 96-110 ◽  
Author(s):  
GD Ross ◽  
JD Lambris

Cells expressing a membrane C receptor (CR(3)) specific for C3b-inactivator- cleaved C3b (C3bi) were identified by rosette assay with C3bi-coated sheep erythrocytes (EC3bi) or C3bi-coated fluorescent microspheres (C3bi-ms). C3bi- ms, probably because of their smaller size, bound to a higher proportion of cells than did EC3bi. C3bi-ms bound to greater than 90 percent of mature neutrophils, 85 percent of monocytes, 92 percent of erythrocytes, and 12 percent of peripheral blood lymphocytes. Binding of C3bi-ms to neutrophils, monocytes, and erythrocytes was inhibited by fluid-phase C3bi, Fab anti-C3c, or Fab anti-C3d but was not inhibited by F(ab')(2) anti-CR(1) (C3b receptor) or F(ab')(2) anti-CR(2) (C3d receptor) nor by fluid-phase C3b, C3c, or C3d. This indicated that monocytes, neutrophils, and erythrocytes expressed C3bi receptors (CR(3)) that were separate and distinct from CR(1) and CR(2) and specific for a site in the C3 molecule that was only exposed subsequently to cleavage of C3b by C3b inactivator and that was either destroyed, covered, or liberated by cleavage of C3bi into C3c and C3d fragments. Lymphocytes differed from these other cell types in that they expressed CR2 in addition to CRa. Lymphocyte C3bi-ms rosettes were inhibited from 50 to 84 percent by F(ab')(2)-anti-CR(2) or fluid-phase C3d, whereas C3d-ms rosettes were inhibited completely by F(ab')(2) anti-CR(2), fluid-phase C3bi, or fluid- phase C3d. Thus, with lymphocytes, C3bi was bound to CR(3), and in addition was bound to CR(2) by way of the intact d region of the C3bi molecule. In studies of the acquisition of C receptors occurring during myeloid cell maturation, the ability to rosette with C3bi-coated particles was detected readily with immature low-density cells, whereas this ability was nearly undetectable with high density mature polymorphonuclear cells. This absence of C3bi binding to polymorphs was not due to a loss of the CR(3) but instead was due to the maturation-linked acquisition of the abiity to secrete elastase that cleaved reagent particle-bound C3bi into CR(3)-unreactive C3d. Neither neutrophils nor monocytes bound C3d-coated particles at any stage of maturation. Assay of CR(3) with mature neutrophils required inhibition of neutrophil elastase with either soybean trypsin inhibitor or anti-elastase antibodies, and the amounts of these elastase inhibitors required to allow EC3bi rosette formation increased with neutrophil maturation. Because lymphocytes bound C3bi to CR(2) as well as to CR(3), specific assay of lymphocyte CR(3) required saturation of membrane CR(2) with Fab' anti-CR(2) before assay for rosettes with C3bi-ms. Only 3.5 percent of anti-CR(2)- treated peripheral blood lymphocytes bound C3bi-ms. Therefore, among normal blood lymphocytes the majority of the 12 percent C3bi-ms-binding cells expressed only CR(2) (8.5 percent), and the small proportion of C3bi-ms- binding cells that expressed CR(3) (3.5 percent) represented a distinct subset from the CR2(+) cells. Double-label assay indicated that 3.0 percent out of 3.5 percent of these CR(3)-bearing lymphocytes were B cells because they expressed membrane immunoglobulins. Of the remaining CR(3)(+) cells, 0.2 percent expressed either Leu-1 or 3A1 T cell antigens, and 0.6 percent expressed the OKM-1 monocyte-null lymphocyte determinant.


2021 ◽  
Author(s):  
Emilia A. Zin ◽  
Daisy Han ◽  
Jennifer Tran ◽  
Nikolas Morisson-Welch ◽  
Meike Visel ◽  
...  

AbstractNeuronal ceroid lipofuscinosis (NCL) is a family of neurodegenerative diseases caused by mutations to genes related to lysosomal function. One variant, CNL11, is caused by mutations to the gene encoding the protein progranulin. Primarily secreted by microglia, progranulin regulates neuronal lysosomal function once endocytosed. Absence of progranulin causes cerebellar atrophy, seizures, ataxia, dementia and vision loss. As progranulin gene therapies targeting the brain are developed, it is also advantageous to focus on the retina, as its characteristics are beneficial for gene therapy development: the retina is easily visible through direct imaging, can be assessed through quantitative methods in vivo, requires smaller amounts of AAV and AAV can be administered via a less invasive surgery. In this study we characterize the retinal degeneration in a progranulin knockout mouse model of CLN11 and study the effects of gene replacement at different time points. All mice heterologously expressing progranulin showed reduction in lipofuscin deposits and microglia infiltration. While mice that receive systemic AAV9.2YF-scCAG-PGRN at post-natal day 3 or 4 show a reduction in retina thinning, mice injected intravitreally at months 1 and 6 with 7m8-scCAG-PGRN show no improvement, and mice injected at 12 months of age show increased retinal thinning in comparison to their controls. Thus, delivery of progranulin proves to be time-sensitive, requiring early administration for optimal therapeutic benefit.


2021 ◽  
Author(s):  
Xiaolei Gao ◽  
Saturnino Herrero ◽  
Valentin Wernet ◽  
Sylvia Erhardt ◽  
Oliver Valerius ◽  
...  

Centrosomes are important microtubule-organizing centers (MTOC) in animal cells. In addition, non-centrosomal MTOCs (ncMTOCs) were described in many cell types. Functional analogs of centrosomes in fungi are the spindle pole bodies (SPBs). In Aspergillus nidulans additional MTOCs were discovered at septa (sMTOC). Although the core components are conserved in both MTOCs, their composition and organization are different and dynamic. Here, we show that the polo-like kinase PlkA binds the γ-tubulin ring complex (γ-TuRC) receptor protein ApsB and contributes to targeting ApsB to both MTOCs. PlkA coordinates SPB outer plaque with sMTOC activities. PlkA kinase activity was required for astral MT formation involving ApsB recruitment. PlkA also interacted with the γ-TuRC inner plaque receptor protein PcpA. Mitosis was delayed without PlkA, and the PlkA protein was required for proper mitotic spindle morphology, although this function was independent of its catalytic activity. Our results suggest polo-like kinase as a regulator of MTOC activities and as a scaffolding unit through interaction with γ-tubulin ring complex receptors.


Author(s):  
Jonathan William Nelson ◽  
Alicia A. McDonough ◽  
Zhidan Xiang ◽  
Donna L. Ralph ◽  
Joshua A Robertson ◽  
...  

The renal nephron consists of a series of distinct cell types which function in concert to maintain fluid and electrolyte balance and blood pressure. The renin angiotensin system (RAS) is central to sodium and volume balance. We aimed to determine how loss of angiotensin II signaling in the proximal tubule (PT), which reabsorbs the bulk of filtered sodium and volume, impacts solute transport throughout the nephron. We hypothesized that proximal tubule (PT) RAS disruption would not only depress PT sodium transporters, but also impact downstream Na+ transporters. Utilizing a mouse model in which the type 1a angiotensin receptor (AT1aR) is deleted specifically within the PT (AT1aR PTKO), we profiled the abundance of sodium transporters, channels, and claudins along the nephron. Absence of PT AT1aR signaling was associated with lower abundance of PT transporters (NHE3, NBCe2 and claudin 2) as well as lower abundance of downstream transporters (total and phosphorylated NKCC2, medullary Na,K-ATPase, phosphorylated NCC and claudin 7) versus controls. However, transport activities of NKCC2 and NCC (assessed with diuretics) were similar between groups in order to maintain electrolyte balance. Together, these results demonstrate the primary impact of angiotensin II regulation on sodium reabsorption in PT at baseline and the associated influence on downstream Na+ transporters, highlighting the ability of the nephron to integrate sodium transport along the nephron to maintain homeostasis.


Sign in / Sign up

Export Citation Format

Share Document