scholarly journals On the biological activity of cytokinin free bases and their ribosides

Planta ◽  
2021 ◽  
Vol 255 (1) ◽  
Author(s):  
Georgy A. Romanov ◽  
Thomas Schmülling

Abstract Main conclusion The free bases of cytokinins are the biologically active forms of the hormone while cytokinin ribosides become active only upon removal of the ribose residue. Abstract Cytokinins (CKs) belong to the classical plant hormones. They were discovered more than 65 years ago, but which molecular forms possess genuine CK activity is still matter of debate. Numerous studies support the view that only the free bases are the biologically active molecules. This standpoint has been challenged in a recent review (Nguyen et al. in Planta 254: 45, 2021) proposing that also CK ribosides may have genuine own CK activity. Here we critically discuss the pros and cons of this viewpoint considering the results of biological assays, CK binding studies, 3D structural data of CK-receptor interaction and mutant analyses. It is concluded that all types of study provide clear and convincing evidence only for biological activity of free bases and not ribosides; the latter are rather a transport form of the hormone without their own biological activity.

1989 ◽  
Vol 109 (1) ◽  
pp. 441-448 ◽  
Author(s):  
T A McCaffrey ◽  
D J Falcone ◽  
C F Brayton ◽  
L A Agarwal ◽  
F G Welt ◽  
...  

The control of smooth muscle cell (SMC) proliferation is determined by the combined actions of mitogens, such as platelet-derived growth factor, and the opposing action of growth inhibitory agents, such as heparin and transforming growth factor-beta (TGF-beta). The present studies identify an interaction between heparin and TGF-beta in which heparin potentiates the biological action of TGF-beta. Using a neutralizing antibody to TGF-beta, we observed that the short term antiproliferative effect of heparin depended upon the presence of biologically active TGF-beta. This effect was observed in rat and bovine aortic SMC and in CCL64 cells, but not in human saphenous vein SMC. Binding studies demonstrated that the addition of heparin (100 micrograms/ml) to medium containing 10% plasma-derived serum resulted in a 45% increase in the specific binding of 125I-TGF-beta to cells. Likewise, heparin induced a twofold increase in the growth inhibitory action of TGF-beta at concentrations of TGF-beta near its apparent dissociation constant. Using 125I-labeled TGF-beta, we demonstrated that TGF-beta complexes with the plasma component alpha 2-macroglobulin, but not with fibronectin. Heparin increases the electrophoretic mobility of TGF-beta apparently by freeing TGF-beta from its complex with alpha 2-macroglobulin. Dextran sulfate, another highly charged antiproliferative molecule, but not chondroitin sulfate or dermatan sulfate, similarly modified TGF-beta's mobility. Relatively high, antiproliferative concentrations of heparin (1-100 micrograms/ml) were required to dissociate the TGF-beta/alpha 2-macroglobulin complex. Thus, it appears that the antiproliferative effect of heparin may be partially attributed to its ability to potentiate the biological activity of TGF-beta by dissociating it from alpha 2-macroglobulin, which normally renders it inactive. We suggest that heparin-like agents may be important regulators of TGF-beta's biological activity.


1996 ◽  
Vol 270 (5) ◽  
pp. G860-G868 ◽  
Author(s):  
J. R. Reeve ◽  
V. E. Eysselein ◽  
G. Rosenquist ◽  
J. Zeeh ◽  
U. Regner ◽  
...  

Many biologically active peptides exist in multiple molecular forms, but the functional significance of regions outside the region of bioactivity is unknown. The biological and immunological data presented in this study indicate that cholecystokinin-58 (CCK-58), unlike other forms of cholecystokinin, has structure that influences its bioactivity. CCK-58 was purified from acid extracts of canine intestinal mucosa until a single absorbance peak was obtained during reverse-phase chromatography. Amino acid analysis precisely determined the peptide concentrations of purified CCK-58 and synthetic CCK-8. Our hypothesis was that if the amino terminus of CCK-58 influences its bioactivity then its activity would be modified when this region was removed from the peptide. To evaluate the importance of the amino terminus of CCK-58 to influence its biological activity, the abilities of CCK-58 and CCK-8 to release amylase from pancreatic acini were compared before and after tryptic digestion. Tryptic digestion of CCK-58 decreased the half-maximal stimulation (EC50) for amylase release from 96 to 28 pM. The EC50 for digested CCK-58 was similar to that for CCK-8 (17 pM). These results suggest that CCK-58 has a structure that shields its bioactive carboxyl terminus. This is further supported by the finding that carboxyl fragments generated from CCK-58 by trypsin or by partial acid hydrolysis were greater than twofold more immunoreactive than the intact CCK-58. The diminished activity of CCK-58 SK shields the carboxyl terminus, which is important to its biological and immunological activities.


Synthesis ◽  
2021 ◽  
Author(s):  
Stefan H. Bossmann ◽  
Raul Neri

AbstractIsoselenocyanates (ISCs) are a class of organoselenium compounds that have been recognized as potential chemotherapeutic and chemopreventative agents against cancer(s) and infectious diseases. ISC compounds are chemically analogous to their isosteric relatives, isothiocyanates (ITCs); however, they possess increased biological activity, such as enhanced cytotoxicity against cancer cells. ISCs not only serve as significant products, but also as precursors and essential intermediates for a variety of organoselenium compounds, such as selenium-containing heterocycles, which are biologically active. While syntheses of ISCs have become less difficult to accomplish, the syntheses of selenium-containing heterocycles are often difficult due to the use of highly toxic selenium reagents. Because of this, ISCs can serve as versatile reagents for the preparation of these heterocycles. In this review, the classical and recent syntheses of ISCs will be discussed, along with notable and recent synthetic work employing ISCs to access novel selenium-containing heterocycles.1 Introduction1.1 Selenium and Health2 Isoselenocyanates2.1 Preparation of Isoselenocyanates3 Selenium-Containing Heterocycles3.1 Notable Synthetic Work3.2 Recent Synthetic Work3.2.1 Synthesis of N-(3-Methyl-4-phenyl-3H-selenazol-2-ylidene)benzamide­ Derivatives3.2.2 Synthesis and X-ray Studies of Diverse Selenourea Derivatives3.2.3 Synthesis of Heteroarene-Fused [1,2,4]Thiadiazoles/Selenadiazoles via Iodine-Promoted [3+2] Oxidative Cyclization3.2.4 2-Amino-1,3-selenazole Derivatives via Base-Promoted Multicomponent Reactions4 Conclusion


2011 ◽  
Vol 6 (11) ◽  
pp. 1934578X1100601
Author(s):  
Karsten Krohn ◽  
Stephan Cludius-Brandt ◽  
Barbara Schulz ◽  
Mambatta Sreelekha ◽  
Pottachola Mohamed Shafi

Several biologically active alkaloids (1-4, 6), including a new quinazoline-6-carboxylic acid (1), were isolated from the medicinal plant Zanthoxylum rhetsa, an evergreen tree, native to subtropical areas. Whereas the pharmacological properties of the plant extract and single constituents have been widely tested, we now show that all of the metabolites have antialgal activities, all but 6 are antibacterial, and 6 and the reduction product 5 (derived from 4) are also antifungal.


1988 ◽  
Vol 8 (3) ◽  
pp. 1247-1252 ◽  
Author(s):  
E Lazar ◽  
S Watanabe ◽  
S Dalton ◽  
M B Sporn

To study the relationship between the primary structure of transforming growth factor alpha (TGF-alpha) and some of its functional properties (competition with epidermal growth factor (EGF) for binding to the EGF receptor and induction of anchorage-independent growth), we introduced single amino acid mutations into the sequence for the fully processed, 50-amino-acid human TGF-alpha. The wild-type and mutant proteins were expressed in a vector by using a yeast alpha mating pheromone promoter. Mutations of two amino acids that are conserved in the family of the EGF-like peptides and are located in the carboxy-terminal part of TGF-alpha resulted in different biological effects. When aspartic acid 47 was mutated to alanine or asparagine, biological activity was retained; in contrast, substitutions of this residue with serine or glutamic acid generated mutants with reduced binding and colony-forming capacities. When leucine 48 was mutated to alanine, a complete loss of binding and colony-forming abilities resulted; mutation of leucine 48 to isoleucine or methionine resulted in very low activities. Our data suggest that these two adjacent conserved amino acids in positions 47 and 48 play different roles in defining the structure and/or biological activity of TGF-alpha and that the carboxy terminus of TGF-alpha is involved in interactions with cellular TGF-alpha receptors. The side chain of leucine 48 appears to be crucial either indirectly in determining the biologically active conformation of TGF-alpha or directly in the molecular recognition of TGF-alpha by its receptor.


1991 ◽  
Vol 11 (7) ◽  
pp. 3603-3612
Author(s):  
S Marcus ◽  
G A Caldwell ◽  
D Miller ◽  
C B Xue ◽  
F Naider ◽  
...  

We have undertaken total synthesis of the Saccharomyces cerevisiae a-factor (NH2-YIIKGVFWDPAC[S-farnesyl]-COOCH3) and several Cys-12 analogs to determine the significance of S-farnesylation and carboxy-terminal methyl esterification to the biological activity of this lipopeptide mating pheromone. Replacement of either the farnesyl group or the carboxy-terminal methyl ester by a hydrogen atom resulted in marked reduction but not total loss of bioactivity as measured by a variety of assays. Moreover, both the farnesyl and methyl ester groups could be replaced by other substituents to produce biologically active analogs. The bioactivity of a-factor decreased as the number of prenyl units on the cysteine sulfur decreased from three to one, and an a-factor analog having the S-farnesyl group replaced by an S-hexadecanyl group was more active than an S-methyl a-factor analog. Thus, with two types of modifications, a-factor activity increased as the S-alkyl group became bulkier and more hydrophobic. MATa cells having deletions of the a-factor structural genes (mfal1 mfa2 mutants) were capable of mating with either sst2 or wild-type MAT alpha cells in the presence of exogenous a-factor, indicating that it is not absolutely essential for MATa cells to actively produce a-factor in order to mate. Various a-factor analogs were found to partially restore mating to these strains as well, and their relative activities in the mating restoration assay were similar to their activities in the other assays used in this study. Mating was not restored by addition of exogenous a-factor to a cross of a wild-type MAT alpha strain and a MATaste6 mutant, indicating a role of the STE6 gene product in mating in addition to its secretion of a-factor.


1989 ◽  
Vol 9 (9) ◽  
pp. 4083-4086 ◽  
Author(s):  
D Defeo-Jones ◽  
J Y Tai ◽  
G A Vuocolo ◽  
R J Wegrzyn ◽  
T L Schofield ◽  
...  

Transforming growth factor-alpha (TGF-alpha) is a growth-promoting protein that binds to the epidermal growth factor (EGF) receptor. To identify critical residues that govern TGF-alpha-EGF receptor binding, we prepared site-specific substitution mutants of TGF-alpha. Mutant proteins were tested in receptor-binding and mitogenesis assays. Semiconservative substitutions at positions 4, 12, 18, and 45 decreased biological activity 2.1- to 14-fold. The conservative substitution of lysine for arginine at position 42 completely eliminated biological activity. Amino acid composition analysis of proteolytic fragments from TGF-alpha and the Lys-42 mutant indicated that these proteins contained the same disulfide bonds. These studies suggest that arginine 42 may be a contact point for TGF-alpha-EGF receptor interaction.


Sign in / Sign up

Export Citation Format

Share Document