Expression of Clonorchis sinensis GIIIsPLA2 protein in baculovirus-infected insect cells and its overexpression facilitating epithelial-mesenchymal transition in Huh7 cells via AKT pathway

2017 ◽  
Vol 116 (4) ◽  
pp. 1307-1316 ◽  
Author(s):  
Mei Shang ◽  
Zhizhi Xie ◽  
Zeli Tang ◽  
Lei He ◽  
Xiaoyun Wang ◽  
...  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guili Xu ◽  
Peng Zhang ◽  
Hansi Liang ◽  
Yunhua Xu ◽  
Jian Shen ◽  
...  

Abstract Background Epithelial-mesenchymal transition (EMT) has been associated with wound healing, tumorigenesis, and metastasis. Circular RNAs (circRNAs) are functional non-coding RNAs involved in multiple human cancers. However, whether and how circRNAs contribute to the EMT in hepatocellular carcinomas (HCC) remains to be deciphered. In this study, we investigated the regulation and function of hsa_circ_0003288 on programmed death-1 ligand 1 (PD-L1) during EMT and HCC invasiveness. Methods Hsa_circ_0003288 expression was measured by real-time quantitative reverse transcriptase PCR (qRT-PCR). Luciferase reporter assays, RNA pull-down assay and fluorescence in situ hybridization (FISH) were used to determine the correlation between hsa_circ_0003288 and miR-145 and between miR-145 and PD-L1. Furthermore, ectopic overexpression and siRNA-mediated downregulation of hsa_circ_0003288, transwell assays, and in vivo studies were used to determine the function of hsa_circ_0003288 on the EMT and invasiveness of L02 and HCC cells. Results miR-145 directly targeted the PD-L1 3′-untranslated region (UTR) region, and hsa_circ_0003288 acted as a miR-145 sponge to regulate PD-L1 expression. Overexpression of hsa_circ_0003288 increased PD-L1 levels and promoted EMT, migration, and invasiveness of L02 cells. These observations were reversed after knockdown of hsa_circ_0003288 in HepG2 and Huh7 cells. Overexpression of PD-L1 rescued EMT, migration, and invasiveness of HepG2 and Huh7 cells after knockdown of hsa_circ_0003288. Furthermore, hsa_circ_0003288 knockdown reduced EMT in in vivo studies. Hsa_circ_0003288/PD-L1 axis was found to mediate the metastatic phenotypes via the PI3K/Akt pathway in HCC. Additionally, expression levels of hsa_circ_0003288 were increased and positively correlated with PD-L1 expression in HCC tissues. Conclusion Our findings demonstrated that hsa_circ_0003288 promoted EMT and invasion of HCC via the hsa_circ_0003288/miR-145/PD-L1 axis through the PI3K/Akt pathway. Targeting hsa_circ_0003288 may be a therapeutic strategy for the treatment of HCC.


2020 ◽  
Author(s):  
Kebin Zheng ◽  
Haipeng Xie ◽  
Xiaosong Wu ◽  
Xichao Wen ◽  
Zhaomu Zeng ◽  
...  

Abstract BackgroundIncreasing studies have revealed that circular RNAs (CircRNAs) make great contribution to regulating tumor progression. Therefore, we intended to explore the expression characteristics, function, and related mechanisms of a novel type of circRNA, PIP5K1A in glioma. MethodsFirstly, RT-PCR was carried out to examine CircPIP5K1A expression in glioma tissues and adjacent normal tissues, and the correlation between CircPIP5K1A level and the clinical pathological indicators of glioma was analyzed. Then, the CircPIP5K1A expression in various glioma cell lines was detected, and a cell model of CircPIP5K1A overexpression and knockdown was constructed. Subsequently, cell proliferation and viability were detected by CCK8 method and BrdU staining, apoptosis was detected by flow cytometry, and cell invasion was examined by Transwell assay. The expression of TCF12, PI3K/AKT pathway apoptotic related proteins (including Caspase3, Bax and Bcl2) and epithelial-mesenchymal transition (EMT) markers (including E-cadherin, Vimentin and N-cadherin) by western blot or RT-PCR. ResultsThe results manifested that CircPIP5K1A was obviously upregulated in glioma tissues (compared with that in normal adjacent tissues), and overexpressed CircPIP5K1A was distinctly related to glioma volume and histopathological grade. Functionally, overexpressing CircPIP5K1A notably elevated the proliferation, invasion, EMT of glioma cells, and inhibited apoptosis both in vivo and in vitro. Besides, CircPIP5K1A also upregulated TCF12 and PI3K/AKT pathway activation. Bioinformatics analysis testified that miR-515-5p was a common target of CircPIP5K1A and TCF12, while dual luciferase reporter assay and RNA immunocoprecipitation (RIP) experiment further confirmed that CircPIP5K1A targeted miR-515-5p, which bound the 3'-untranslated region (UTR) of TCF12. ConclusionsAltogether, the study illustrated that CircPIP5K1A is a potential prognostic marker in glioma and regulates the development of glioma through the modulating miR-515-5p mediated TCF12/PI3K/AKT axis.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1856 ◽  
Author(s):  
Wei ◽  
Penso ◽  
Hackman ◽  
Wang ◽  
Mackenzie

Most pancreatic cancers are usually diagnosed at an advanced stage when they have already metastasized. Epigallocatechin-3-gallate (EGCG), a major polyphenolic constituent of green tea, has been shown to reduce pancreatic cancer growth, but its effect on metastasis remains elusive. This study evaluated the capacity of EGCG to inhibit pancreatic cancer cell migration and invasion and the underlying mechanisms. EGCG reduced pancreatic cancer cell growth, migration, and invasion in vitro and in vivo. EGCG prevented “Cadherin switch” and decreased the expression level of TCF8/ZEB1, β-Catenin, and Vimentin. Mechanistically, EGCG inhibited the Akt pathway in a time-dependent manner, by suppressing IGFR phosphorylation and inducing Akt degradation. Co-treatment with catalase or N-Acetyl-L-cysteine did not abrogate EGCG’s effect on the Akt pathway or cell growth. Moreover, EGCG synergized with gemcitabine to suppress pancreatic cancer cell growth, migration, and invasion, through modulating epithelial–mesenchymal transition markers and inhibiting Akt pathway. In summary, EGCG may prove beneficial to improve gemcitabine sensitivity in inhibiting pancreatic cancer cell migration and invasion, to some extent through the inhibition of Akt pathway and epithelial–mesenchymal transition.


Sign in / Sign up

Export Citation Format

Share Document