A Greedy Algorithm to Compute Arrangements of Lines in the Projective Plane
Keyword(s):
AbstractWe introduce a greedy algorithm optimizing arrangements of lines with respect to a property. We apply this algorithm to the case of simpliciality: it recovers all known simplicial arrangements of lines in a very short time and also produces a yet unknown simplicial arrangement with 35 lines. We compute a (certainly incomplete) database of combinatorially simplicial complex arrangements of hyperplanes with up to 50 lines. Surprisingly, it contains several examples whose matroids have an infinite space of realizations up to projectivities.
2019 ◽
Vol 19
(4)
◽
2000 ◽
Vol 179
◽
pp. 197-200
1977 ◽
Vol 35
◽
pp. 466-467
Keyword(s):
1981 ◽
Vol 39
◽
pp. 312-313
Keyword(s):
1985 ◽
Vol 43
◽
pp. 172-173
1990 ◽
Vol 48
(3)
◽
pp. 132-133
Keyword(s):