scholarly journals Soil frost affects stem diameter growth of Norway spruce with delay

Trees ◽  
2021 ◽  
Author(s):  
Tapani Repo ◽  
Timo Domisch ◽  
Jouni Kilpeläinen ◽  
Harri Mäkinen

Abstract Key message A lack of snow cover and increased soil freezing may not only have short-term impacts on trees but longer-lasting lagged effects on radial growth. Abstract Soil temperature and soil frost intensity are affected by the depth of insulating snow cover and the timing of snowmelt which are predicted to change by climate warming. This may increase tree growth if there is less soil freezing or decrease growth if there is no insulating snow cover, but frost temperatures still exist. Previously, we showed that the changes in soil frost by snow manipulations in a ~ 50-year-old stand of Norway spruce [Picea abies (L.) Karst.] in eastern Finland in two winters (2005/2006 and 2006/2007) led to short-term changes in physiology, morphology, and the growth of the shoots and roots. The treatments were: (1) control with natural insulating snow accumulation and melting; (2) snow removal during winter; and (3) snow removal in winter and insulation at the top of the forest floor in late winter to delay soil thawing. In this study, we examined the lagged effects of those treatments by radial trunk increment cores during the nine-year recovery period after the termination of the treatments. Annual ring width index (AWI) was calculated for each year by normalization of the ring width in the respective year in proportion to the ring width in the last year (2005) before the treatments. No differences in AWI were found between the treatments before or during the snow manipulation period. However, differences started to appear 1 year after the treatments were finished, became significant 4 years later in 2011 and lasted for 3 years. The radial increment was lower in the treatment with snow removed than in the control and in the treatment with insulation to delay soil thawing, but there were no differences between the latter two treatments. The results indicate that a lack of snow cover may not only have short-term impacts but longer-lasting consequences on the radial growth of trees. The positive effects of prolonged growing season by the increasing summer temperatures on forest growth predicted for the boreal region may therefore not be fully realised due to the negative effects of decreased snow cover and increasing soil freezing.

2021 ◽  
Vol 875 (1) ◽  
pp. 012074
Author(s):  
B Aparin ◽  
B Babikov ◽  
D Zolotukhin ◽  
E Mingareeva

Abstract The study presents an analysis of radial growth of Scots pine and Norway spruce trees growing on drained soils formed on varved clays at the sample sites of the Lisino Experimental Forestry (Lisino). Based on dendrochronological studies in Lisino, it has been found that the radial growth of Scots pine and Norway spruce is a sensitive indicator of changes in the soil water regime, climate, and phytocenotic relationships. On the basis of the character of tree-ring width growth, the growth charts allowed distinguishing zones with close to average growth values, as well as with increased and decreased values of radial growth. The cyclical pattern of tree ring width is well expressed in the successive change of zones. The availability of dendrochronological research materials with precise spatial and temporal reference makes it possible to organize monitoring of radial growth of trees as an indicator of changes in climate and habitat conditions.


2000 ◽  
Vol 31 ◽  
pp. 417-421 ◽  
Author(s):  
N. I. Osokin ◽  
R. S. Samoylov ◽  
A.V. Sosnovskiy ◽  
S. A. Sokratov ◽  
V. A. Zhidkov

AbstractA mathematical model of snow-cover influence on soil freezing, taking into account the phase transition layer, water migration in soil, frost heave and ice-layer formation, has been developed. The modeled results are in good agreement with data observed in natural conditions. The influence of a possible delay between the time of negative temperature establishment in the air and the beginning of snow accumulation, and possible variations of the thermophysical properties of snow cover in the wide range previously reported were investigated by numerical experiments. It was found that the delay could change the frozen-soil depth up to 2–3 times, while different thermophysical characteristics of snow changed the resulting freezing depth 4–5 times.


2019 ◽  
Vol 28 (3) ◽  
pp. e016 ◽  
Author(s):  
Petr Čermák ◽  
Tomáš Kolář ◽  
Tomáš Žid ◽  
Miroslav Trnka ◽  
Michal Rybníček

Aim of study: To assess the crown condition and radial growth of Norway spruce on plots with an increasing frequency and strength of drought during the last decades.Area of the study: Northern Moravia, Czech Republic.Material and methods: Crown condition assessment and dendrochronology analysis were used.Main results: Tree-ring width was significantly influenced mainly by previous autumn and current summer climate. Temporal variability of growth-climate relationship shows that the impact of water sufficiency (precipitation, relative soil water content, drought index) markedly increased mainly during the 2000s and the 2010s. Most of climate-growth relationships were significant only in the last two or three decades. The observed crown condition and their relationships with TRW also indicate stress intensification during the same period. Our results suggest that the water availability was the main factor affecting radial growth, occurrence of negative pointer years and probably also the factor triggering the decline.Research highlights: In these current site and climate conditions, silviculture of Norway spruce is extremely risky in the study area. Our results have also shown that the observed climate change is too dynamic for the long-term forest plans, especially as regards their recommended forest species composition.


1974 ◽  
Vol 13 (69) ◽  
pp. 521-533
Author(s):  
Charles Harris

Soil temperatures were recorded over periods of several weeks in the years 1909 and 1970 in two sites to a depth of 100 cm. It was found that snow depth was of major importance in the rate of freezing of the soil in winter; where snow cover was less than 5 cm in depth freezing rates were almost double those where snow depth was over 1 m. Snow cover also insulated the soil surface from above-zero air temperatures during spring, and soil thawing commenced from the surface only following the clearance of snow. Similarly, insulation of the soil surface by snow prevented short-term freezing and thawing cycles penetrating the soil, although even where snow cover was absent such short-term cycles were not observed to penetrate the soil to depths in excess of 5 cm. This surficial freezing and thawing of the soil took place more readily in spring than in the autumn. It was concluded that the annual cycle of soil freezing and thawing was the dominant factor in the thermal regime of these soils, short-term freezing cycles affecting only the immediate surface soil layers.


2013 ◽  
Vol 93 (4) ◽  
pp. 427-433 ◽  
Author(s):  
Juergen Kreyling ◽  
Mahsa Haei ◽  
Hjalmar Laudon

Kreyling, J., Haei, M. and Laudon, H. 2013. Snow removal reduces annual cellulose decomposition in a riparian boreal forest. Can. J. Soil Sci. 93: 427–433. Decomposition is a key process in carbon and nutrient cycling. However, little is known about its response to altered winter soil temperature regimes in boreal forests. Here, the impact of soil frost on cellulose decomposition over 1 yr and soil biotic activity (bait-lamina sticks) over winter, in spring, and in summer was investigated using a long-term (9-yr) snow-cover manipulation experiment in a boreal Picea abies forest. The experiment consisted of the treatments: snow removal, increased insulation, and ambient control. The snow removal treatment caused longer and deeper soil frost (minimum temperature −8.6°C versus −1.4°C) at 10 cm soil depth in comparison with control, while the increased insulation treatment resulted in nearly no soil frost during winter. Annual cellulose decomposition rates were reduced by 46% in the snow removal manipulation in comparison with control conditions. Increased insulation had no significant effect on decomposition. The decomposition was mainly driven by microorganisms, as no significant difference was observed for containers enclosed with a 44-µm and a 1-mm mesh. Soil biotic activity was slightly increased by both the snow removal and the increased insulation treatment in comparison with control conditions over winter. However, this effect disappeared over spring and summer. We conclude that soil frost can have strong effects on decomposition in boreal ecosystems. Further studies should investigate to which degree the observed reduction in decomposition due to reduced snow cover in winter slows or even offsets the expected increase in decomposition rates with global warming.


1974 ◽  
Vol 13 (69) ◽  
pp. 521-533 ◽  
Author(s):  
Charles Harris

Soil temperatures were recorded over periods of several weeks in the years 1909 and 1970 in two sites to a depth of 100 cm. It was found that snow depth was of major importance in the rate of freezing of the soil in winter; where snow cover was less than 5 cm in depth freezing rates were almost double those where snow depth was over 1 m. Snow cover also insulated the soil surface from above-zero air temperatures during spring, and soil thawing commenced from the surface only following the clearance of snow. Similarly, insulation of the soil surface by snow prevented short-term freezing and thawing cycles penetrating the soil, although even where snow cover was absent such short-term cycles were not observed to penetrate the soil to depths in excess of 5 cm. This surficial freezing and thawing of the soil took place more readily in spring than in the autumn. It was concluded that the annual cycle of soil freezing and thawing was the dominant factor in the thermal regime of these soils, short-term freezing cycles affecting only the immediate surface soil layers.


2016 ◽  
Vol 65 (1) ◽  
pp. 43-56 ◽  
Author(s):  
Aysan Badraghi ◽  
Radek Pokorný ◽  
Kateřina Novosadová ◽  
Justina Pietras ◽  
Michal V. Marek

Abstract This investigation examined the effects of two different carbon dioxide concentrations ([CO2]): Ambient (A, 385 μmol (CO2) mol−1) and elevated (E, A+385 μmol (CO2) mol−1)) on the tree-ring width and early to latewood proportion in Norway spruce for seven years (2006-2012). Further, to improve our understanding of the influence of climatic variables, we assessed the effects of precipitation and temperature. Our observations showed that spruce trees growing under elevated CO2 (EC) formed less early (p > 0.05) and latewood (p < 0.05) and hence smaller annual increments (p > 0.05) than trees in ambient CO2 (AC). Early to latewood proportion was nearly 73% and 75% in AC and EC, respectively. In both CO2 concentrations, the largest tree-rings and earlywood width was observed during 2009 and 2010, which is coincident with the highest precipitation in May (2010) and the highest air temperature in April (2009). Moreover, to determine the association between the latewood formation and air temperature during the second half of the growing season, and correlation between the earlywood formation and precipitation during the first half of the growing season we run Spearman’s correlation test, the determination coefficient values for latewood formation were r = 0.45 (AC) and r = 0.68 (EC), and for earlywood formation were r = 0.53 (AC) and r = 0.42 (EC), although coefficient values were not statistically significant (p > 0.05). Also, our study indicated that temperature had stonger influence than precipitation in EC, but in AC precipitation had the strongest effect on radial growth.


2017 ◽  
Vol 41 (4) ◽  
pp. 478-495 ◽  
Author(s):  
UK Thapa ◽  
S St. George ◽  
DK Kharal ◽  
NP Gaire

The climate of Nepal has changed rapidly over the recent decades, but most instrumental records of weather and hydrology only extend back to the 1980s. Tree rings can provide a longer perspective on recent environmental changes, and since the early 2000s, a new round of field initiatives by international researchers and Nepali scientists have more than doubled the size of the country’s tree-ring network. In this paper, we present a comprehensive analysis of the current tree-ring width network for Nepal, and use this network to estimate changes in forest growth nation-wide during the last four centuries. Ring-width chronologies in Nepal have been developed from 11 tree species, and half of the records span at least 290 years. The Nepal tree-ring width network provides a robust estimate of annual forest growth over roughly the last four centuries, but prior to this point, our mean ring-width composite fluctuates wildly due to low sample replication. Over the last four centuries, two major events are prominent in the all-Nepal composite: (i) a prolonged and widespread growth suppression during the early 1800s; and (ii) heightened growth during the most recent decade. The early 19th century decline in tree growth coincides with two major Indonesian eruptions, and suggests that short-term disturbances related to climate extremes can exert a lasting influence on the vigor of Nepal’s forests. Growth increases since AD 2000 are mainly apparent in high-elevation fir, which may be a consequence of the observed trend towards warmer temperatures, particularly during winter. This synthesis effort should be useful to establish baselines for tree-ring data in Nepal and provide a broader context to evaluate the sensitivity or behavior of this proxy in the central Himalayas.


1981 ◽  
Vol 51 (2) ◽  
pp. 175-180 ◽  
Author(s):  
C. D. B. Hawkins ◽  
G. R. Lister ◽  
R. P. Fink ◽  
W. E. Vidaver

Sign in / Sign up

Export Citation Format

Share Document