Effects of oxidative stress on vascular function, and the role of anesthetics

2011 ◽  
Vol 26 (1) ◽  
pp. 141-142 ◽  
Author(s):  
Hiroyuki Kinoshita
2021 ◽  
Vol 22 (3) ◽  
pp. 1296
Author(s):  
Yue Ruan ◽  
Subao Jiang ◽  
Adrian Gericke

Age-related macular degeneration (AMD) is a common irreversible ocular disease characterized by vision impairment among older people. Many risk factors are related to AMD and interact with each other in its pathogenesis. Notably, oxidative stress and choroidal vascular dysfunction were suggested to be critically involved in AMD pathogenesis. In this review, we give an overview on the factors contributing to the pathophysiology of this multifactorial disease and discuss the role of reactive oxygen species and vascular function in more detail. Moreover, we give an overview on therapeutic strategies for patients suffering from AMD.


2014 ◽  
Vol 42 (4) ◽  
pp. 1006-1011 ◽  
Author(s):  
Mark R. Miller

Air pollution has been estimated to be responsible for several millions of deaths worldwide per year, the majority of which have been attributed to cardiovascular causes. The particulate matter in air pollution has been shown impair vascular function, increase blood pressure, promote thrombosis and impair fibrinolysis, accelerate the development of atherosclerosis, increase the extent of myocardial ischaemia, and increase susceptibility to myocardial infarction. The pathways underlying these effects are complex and poorly understood; however, particulate-induced oxidative stress repeatedly emerges as a potential mechanism in all of these detrimental cardiovascular actions. The present mini-review will use diesel exhaust as an example of a pollutant rich in combustion-derived nanoparticles, to describe the potential by which oxidative stress could drive the cardiovascular effects of air pollution.


2007 ◽  
Vol 27 (01) ◽  
pp. 5-12 ◽  
Author(s):  
G. Muller ◽  
C. Goettsch ◽  
H. Morawietz

SummaryThis review focuses on the role of vascular oxidative stress in the development and progression of endothelial dysfunction. We discuss different sources of oxidative stress in the vessel wall, oxidative stress and coagulation, the role of oxidative stress and vascular function in arteries and veins, the flow-dependent regulation of reactive oxygen species, the putative impact of oxidative stress on atherosclerosis, the interaction of angiotensin II, oxidative stress and endothelial dysfunction, and clinical implications.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Sergey I Dikalov ◽  
Vladimir Mayorov ◽  
Daniel Fehrenbach ◽  
Mingfang Ao ◽  
Alexander Panov ◽  
...  

We have previously reported that depletion Cyclophilin D (CypD), a regulatory subunit of mitochondrial permeability transition pore, improves vascular function and attenuates hypertension, however, specific regulation of CypD in hypertension is not clear. Analysis of human arterioles from hypertensive patients did not reveal alterations in CypD levels but showed 3-fold increase in CypD acetylation. We hypothesized that CypD-K166 acetylation promotes vascular oxidative stress and hypertension, and measures to reduce CypD acetylation can improve vascular function and reduce hypertension. Essential hypertension and animal models of hypertension are linked to inactivation of mitochondrial deacetylase Sirt3 by highly reactive lipid oxidation products, isolevuglandins (isoLGs), and supplementation of mice with mitochondria targeted scavenger of isoLGs, mito2HOBA, improves CypD deacetylation. To test the specific role of CypD-K166 acetylation, we developed CypD-K166R deacetylation mimic mutant mice. Mitochondrial respiration, vascular function and systolic blood pressure in CypD-K166R mice was similar to wild-type C57Bl/6J mice. Meanwhile, angiotensin II-induced hypertension was substantially attenuated in CypD-K166R mice (144 mmHg) compared with wild-type mice (161 mmHg). Angiotensin II infusion in wild-type mice significantly increased mitochondrial superoxide, impaired endothelial dependent relaxation, and reduced the level of endothelial nitric oxide which was prevented in angiotensin II-infused CypD-K166R mice. Hypertension is linked to increased levels of inflammatory cytokines TNFα and IL-17A promoting vascular oxidative stress and end-organ damage. We have tested if CypD-K166R mice are protected from cytokine-induced oxidative stress. Indeed, ex vivo incubation of aorta with the mixture of angiotensin II, TNFα and IL-17A (24 hours) increased mitochondrial superoxide by 2-fold in wild-type aortas which was abrogated in CypD-K166R mice. These data support the pathophysiological role of CypD acetylation in inflammation, oxidative stress and hypertensive end-organ damage. We propose that targeting CypD acetylation may have therapeutic potential in treatment of vascular dysfunction and hypertension.


Hypertension ◽  
2012 ◽  
Vol 60 (3) ◽  
pp. 659-668 ◽  
Author(s):  
Melissa A.H. Witman ◽  
Anette S. Fjeldstad ◽  
John McDaniel ◽  
Stephen J. Ives ◽  
Jia Zhao ◽  
...  

2019 ◽  
Vol 41 (26) ◽  
pp. 2472-2483 ◽  
Author(s):  
Marin Kuntic ◽  
Matthias Oelze ◽  
Sebastian Steven ◽  
Swenja Kröller-Schön ◽  
Paul Stamm ◽  
...  

Abstract Aims Electronic (e)-cigarettes have been marketed as a ‘healthy’ alternative to traditional combustible cigarettes and as an effective method of smoking cessation. There are, however, a paucity of data to support these claims. In fact, e-cigarettes are implicated in endothelial dysfunction and oxidative stress in the vasculature and the lungs. The mechanisms underlying these side effects remain unclear. Here, we investigated the effects of e-cigarette vapour on vascular function in smokers and experimental animals to determine the underlying mechanisms. Methods and results Acute e-cigarette smoking produced a marked impairment of endothelial function in chronic smokers determined by flow-mediated dilation. In mice, e-cigarette vapour without nicotine had more detrimental effects on endothelial function, markers of oxidative stress, inflammation, and lipid peroxidation than vapour containing nicotine. These effects of e-cigarette vapour were largely absent in mice lacking phagocytic NADPH oxidase (NOX-2) or upon treatment with the endothelin receptor blocker macitentan or the FOXO3 activator bepridil. We also established that the e-cigarette product acrolein, a reactive aldehyde, recapitulated many of the NOX-2-dependent effects of e-cigarette vapour using in vitro blood vessel incubation. Conclusions E-cigarette vapour exposure increases vascular, cerebral, and pulmonary oxidative stress via a NOX-2-dependent mechanism. Our study identifies the toxic aldehyde acrolein as a key mediator of the observed adverse vascular consequences. Thus, e-cigarettes have the potential to induce marked adverse cardiovascular, pulmonary, and cerebrovascular consequences. Since e-cigarette use is increasing, particularly amongst youth, our data suggest that aggressive steps are warranted to limit their health risks.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1308
Author(s):  
Ana Asenjo-Bueno ◽  
Elena Alcalde-Estévez ◽  
Mariam El Assar ◽  
Gemma Olmos ◽  
Patricia Plaza ◽  
...  

Aging impairs vascular function, but the mechanisms involved are unknown. The aim of this study was to analyze whether aging-related hyperphosphatemia is implied in this effect by elucidating the role of oxidative stress. C57BL6 mice that were aged 5 months (young) and 24 months (old), receiving a standard (0.6%) or low-phosphate (0.2%) diet, were used. Isolated mesenteric arteries from old mice showed diminished endothelium-dependent vascular relaxation by the down-regulation of NOS3 expression, increased inflammation and increased fibrosis in isolated aortas, compared to those isolated from young mice. In parallel, increased Nox4 expression and reduced Nrf2, Sod2-Mn and Gpx1 were found in the aortas from old mice, resulting in oxidant/antioxidant imbalance. The low-phosphate diet improved vascular function and oxidant/antioxidant balance in old mice. Mechanisms were analyzed in endothelial (EC) and vascular smooth muscle cells (SMCs) treated with the phosphate donor ß-glycerophosphate (BGP). In EC, BGP increased Nox4 expression and ROS production, which reduced NOS3 expression via NFκB. BGP also increased inflammation in EC. In SMC, BGP increased Collagen I and fibronectin expression by priming ROS production and NFκB activity. In conclusion, hyperphosphatemia reduced endothelium-dependent vascular relaxation and increased inflammation and vascular fibrosis through an impairment of oxidant/antioxidant balance in old mice. A low-phosphate diet achieved improvements in the vascular function in old mice.


2005 ◽  
Vol 173 (4S) ◽  
pp. 214-215 ◽  
Author(s):  
Daniel Cho ◽  
Xiao Fang Ha ◽  
J. Andre Melendez ◽  
Louis J. Giorgi ◽  
Badar M. Mian

Sign in / Sign up

Export Citation Format

Share Document