Oxidative stress and endothelial dysfunction

2007 ◽  
Vol 27 (01) ◽  
pp. 5-12 ◽  
Author(s):  
G. Muller ◽  
C. Goettsch ◽  
H. Morawietz

SummaryThis review focuses on the role of vascular oxidative stress in the development and progression of endothelial dysfunction. We discuss different sources of oxidative stress in the vessel wall, oxidative stress and coagulation, the role of oxidative stress and vascular function in arteries and veins, the flow-dependent regulation of reactive oxygen species, the putative impact of oxidative stress on atherosclerosis, the interaction of angiotensin II, oxidative stress and endothelial dysfunction, and clinical implications.

2021 ◽  
Vol 22 (3) ◽  
pp. 1296
Author(s):  
Yue Ruan ◽  
Subao Jiang ◽  
Adrian Gericke

Age-related macular degeneration (AMD) is a common irreversible ocular disease characterized by vision impairment among older people. Many risk factors are related to AMD and interact with each other in its pathogenesis. Notably, oxidative stress and choroidal vascular dysfunction were suggested to be critically involved in AMD pathogenesis. In this review, we give an overview on the factors contributing to the pathophysiology of this multifactorial disease and discuss the role of reactive oxygen species and vascular function in more detail. Moreover, we give an overview on therapeutic strategies for patients suffering from AMD.


2020 ◽  
Vol 134 (1) ◽  
pp. 3-13 ◽  
Author(s):  
Samah Ahmadieh ◽  
Ha Won Kim ◽  
Neal L. Weintraub

Abstract Perivascular adipose tissue (PVAT) directly juxtaposes the vascular adventitia and contains a distinct mixture of mature adipocytes, preadipocytes, stem cells, and inflammatory cells that communicate via adipocytokines and other signaling mediators with the nearby vessel wall to regulate vascular function. Cross-talk between perivascular adipocytes and the cells in the blood vessel wall is vital for normal vascular function and becomes perturbed in diseases such as atherosclerosis. Perivascular adipocytes surrounding coronary arteries may be primed to promote inflammation and angiogenesis, and PVAT phenotypic changes occurring in the setting of obesity, hyperlipidemia etc., are fundamentally important in determining a pathogenic versus protective role of PVAT in vascular disease. Recent discoveries have advanced our understanding of the role of perivascular adipocytes in modulating vascular function. However, their impact on cardiovascular disease (CVD), particularly in humans, is yet to be fully elucidated. This review will highlight the complex mechanisms whereby PVAT regulates atherosclerosis, with an emphasis on clinical implications of PVAT and emerging strategies for evaluation and treatment of CVD based on PVAT biology.


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Sergey I Dikalov ◽  
Vladimir Mayorov ◽  
Daniel Fehrenbach ◽  
Mingfang Ao ◽  
Alexander Panov ◽  
...  

We have previously reported that depletion Cyclophilin D (CypD), a regulatory subunit of mitochondrial permeability transition pore, improves vascular function and attenuates hypertension, however, specific regulation of CypD in hypertension is not clear. Analysis of human arterioles from hypertensive patients did not reveal alterations in CypD levels but showed 3-fold increase in CypD acetylation. We hypothesized that CypD-K166 acetylation promotes vascular oxidative stress and hypertension, and measures to reduce CypD acetylation can improve vascular function and reduce hypertension. Essential hypertension and animal models of hypertension are linked to inactivation of mitochondrial deacetylase Sirt3 by highly reactive lipid oxidation products, isolevuglandins (isoLGs), and supplementation of mice with mitochondria targeted scavenger of isoLGs, mito2HOBA, improves CypD deacetylation. To test the specific role of CypD-K166 acetylation, we developed CypD-K166R deacetylation mimic mutant mice. Mitochondrial respiration, vascular function and systolic blood pressure in CypD-K166R mice was similar to wild-type C57Bl/6J mice. Meanwhile, angiotensin II-induced hypertension was substantially attenuated in CypD-K166R mice (144 mmHg) compared with wild-type mice (161 mmHg). Angiotensin II infusion in wild-type mice significantly increased mitochondrial superoxide, impaired endothelial dependent relaxation, and reduced the level of endothelial nitric oxide which was prevented in angiotensin II-infused CypD-K166R mice. Hypertension is linked to increased levels of inflammatory cytokines TNFα and IL-17A promoting vascular oxidative stress and end-organ damage. We have tested if CypD-K166R mice are protected from cytokine-induced oxidative stress. Indeed, ex vivo incubation of aorta with the mixture of angiotensin II, TNFα and IL-17A (24 hours) increased mitochondrial superoxide by 2-fold in wild-type aortas which was abrogated in CypD-K166R mice. These data support the pathophysiological role of CypD acetylation in inflammation, oxidative stress and hypertensive end-organ damage. We propose that targeting CypD acetylation may have therapeutic potential in treatment of vascular dysfunction and hypertension.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Anna E Dikalova ◽  
Roman Uzhachenko ◽  
Hana A Itani ◽  
David G Harrison ◽  
Sergey Dikalov

Endothelial dysfunction is associated with aging, diabetes, hyperlipidemia, obesity and these risk factors affect the expression and activity of the mitochondrial deacetylase Sirt3. Sirt3 activates major antioxidant SOD2 by deacetylation of specific lysine residues and Sirt3 depletion increases oxidative stress. We hypothesized that loss of vascular Sirt3 increases endothelial dysfunction, promotes hypertension and end organ damage. The role of vascular Sirt3 was studied in wild-type C57Bl/6J mice and tamoxifen-inducible smooth muscle specific Sirt3 knockout mice (Smc Sirt3 KO ) using angiotensin II model of hypertension (Ang II, 0.7 mg/kg/day). Western blot showed 30% reduction of vascular Sirt3 and 2-fold increase in SOD2 acetylation in Ang II-infused WT mice. We have tested if ex vivo treatment of aorta with Sirt3 activator resveratrol improves endothelial function. Indeed, ex vivo incubation with resveratrol (10 μM) significantly reduced SOD2 acetylation, diminished mitochondrial O 2 and increased endothelial NO to normal level while Sirt3-inactive analog dihydroresveratrol had no effect. Specific role of vascular Sirt3 was studied in Smc Sirt3 KO mice by crossing floxed Sirt3 mice with mice carrying gene for inducible cre in the vascular smooth muscle. Sirt3 deletion exacerbates hypertension (165 mm Hg vs 155 mm Hg in wild-type) and significantly increases mortality in Ang II-infused Smc Sirt3 KO mice (60% vs 10% in wild-type) associated with severe edema and aortic aneurysm (100% vs 20% in wild-type). Decrease of NO is a hallmark of endothelial dysfunction in hypertension due to vascular oxidative stress. Indeed, Ang II infusion increased vascular O 2 by 2-fold and reduced endothelial NO by 2-fold. Interestingly, Ang II infusion in Smc Sirt3 KO mice caused severe vascular oxidative stress (3-fold increase in O 2 ) and exacerbated endothelial dysfunction (4-fold decrease in NO). These data indicate that reduced vascular Sirt3 activity occurs in hypertension and this promotes vascular oxidative stress, increases endothelial dysfunction, exacerbates hypertension, increases end-organ-damage and mortality. It is conceivable that Sirt3 agonists and SOD2 mimetics may have therapeutic potential in cardiovascular disease.


2012 ◽  
Vol 113 (2) ◽  
pp. 184-191 ◽  
Author(s):  
Sophocles Chrissobolis ◽  
Botond Banfi ◽  
Christopher G. Sobey ◽  
Frank M. Faraci

Angiotensin II (Ang II) promotes vascular disease through several mechanisms including by producing oxidative stress and endothelial dysfunction. Although multiple potential sources of reactive oxygen species exist, the relative importance of each is unclear, particularly in individual vascular beds. In these experiments, we examined the role of NADPH oxidase (Nox1 and Nox2) in Ang II-induced endothelial dysfunction in the cerebral circulation. Treatment with Ang II (1.4 mg·kg−1·day−1 for 7 days), but not vehicle, increased blood pressure in all groups. In wild-type (WT; C57Bl/6) mice, Ang II reduced dilation of the basilar artery to the endothelium-dependent agonist acetylcholine compared with vehicle but had no effect on responses in Nox2-deficient (Nox2−/y) mice. Ang II impaired responses to acetylcholine in Nox1 WT (Nox1+/y) and caused a small reduction in responses to acetylcholine in Nox1-deficient (Nox1−/y) mice. Ang II did not impair responses to the endothelium-independent agonists nitroprusside or papaverine in either group. In WT mice, Ang II increased basal and phorbol-dibutyrate-stimulated superoxide production in the cerebrovasculature, and these increases were abolished in Nox2−/y mice. Overall, these data suggest that Nox2 plays a relatively prominent role in mediating Ang II-induced oxidative stress and cerebral endothelial dysfunction, with a minor role for Nox1.


2019 ◽  
Vol 41 (26) ◽  
pp. 2472-2483 ◽  
Author(s):  
Marin Kuntic ◽  
Matthias Oelze ◽  
Sebastian Steven ◽  
Swenja Kröller-Schön ◽  
Paul Stamm ◽  
...  

Abstract Aims Electronic (e)-cigarettes have been marketed as a ‘healthy’ alternative to traditional combustible cigarettes and as an effective method of smoking cessation. There are, however, a paucity of data to support these claims. In fact, e-cigarettes are implicated in endothelial dysfunction and oxidative stress in the vasculature and the lungs. The mechanisms underlying these side effects remain unclear. Here, we investigated the effects of e-cigarette vapour on vascular function in smokers and experimental animals to determine the underlying mechanisms. Methods and results Acute e-cigarette smoking produced a marked impairment of endothelial function in chronic smokers determined by flow-mediated dilation. In mice, e-cigarette vapour without nicotine had more detrimental effects on endothelial function, markers of oxidative stress, inflammation, and lipid peroxidation than vapour containing nicotine. These effects of e-cigarette vapour were largely absent in mice lacking phagocytic NADPH oxidase (NOX-2) or upon treatment with the endothelin receptor blocker macitentan or the FOXO3 activator bepridil. We also established that the e-cigarette product acrolein, a reactive aldehyde, recapitulated many of the NOX-2-dependent effects of e-cigarette vapour using in vitro blood vessel incubation. Conclusions E-cigarette vapour exposure increases vascular, cerebral, and pulmonary oxidative stress via a NOX-2-dependent mechanism. Our study identifies the toxic aldehyde acrolein as a key mediator of the observed adverse vascular consequences. Thus, e-cigarettes have the potential to induce marked adverse cardiovascular, pulmonary, and cerebrovascular consequences. Since e-cigarette use is increasing, particularly amongst youth, our data suggest that aggressive steps are warranted to limit their health risks.


Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1257
Author(s):  
Yu-Chen Cheng ◽  
I-Ling Hung ◽  
Yen-Nung Liao ◽  
Wen-Long Hu ◽  
Yu-Chiang Hung

Salvia miltiorrhiza (SM) is a common traditional Chinese medicine used in the treatment of cardiovascular and cerebrovascular diseases. Endothelial dysfunction plays an important role in the pathology of cardiovascular diseases. Endothelial dysfunction may induce inflammation and change vascular tone and permeability. The main pathological mechanism of endothelial dysfunction is the formation of reactive oxygen species (ROS). Mitochondria are the main source of energy and can also produce large amounts of ROS. Recent studies have shown that extracts of SM have antioxidative, anti-inflammatory, and antithrombus properties. In this review, we discuss the mechanism of oxidative stress in the mitochondria, endothelial dysfunction, and the role of SM in these oxidative events.


2013 ◽  
Vol 20 (2) ◽  
pp. 149-155
Author(s):  
Mircea Munteanu ◽  
Adrian Sturza ◽  
Adalbert Schiller ◽  
Romulus Timar

Abstract Cardiovascular disease is the leading cause of disease / mortality worldwide. It is generally accepted that increased production of reactive oxygen species (ROS) has an important role in cardiovascular pathology, contributing to endothelial dysfunction and to the aggravation of atherosclerosis. Among all cardiovascular risk factors, diabetes mellitus is one of the most important. The worldwide prevalence of diabetes has increased rapidly even in developing countries, doubling the combined risk of cardiovascular events in patients with hypertension. In diabetes, increased reactive oxygen species (ROS) production leads to endothelial dysfunction, recognized by the presence of impaired vascular relaxation, increased vascular smooth muscle cells growth and hypertrophy, all together contributing to atherosclerotic plaque formation. On this basis, the vascular endothelium has emerged as a therapeutic target, with the aim to improve systemic metabolic state by improving vascular function. In this review we have focused on the most important sources of reactive oxygen species generated by vascular endothelium in diabetic patients (NADPH Oxidases, eNOS uncoupling, Xanthine oxidase). The importance of oxidative stress in mediating the vascular complications of diabetes is supported by studies showing that antioxidant therapy correct the vascular function in humans or in experimental models of diabetes. Therefore, understanding the physiological mechanisms involved in vascular disorders resulting from hyperglycemia is essential for the proper use of available therapeutic resources.


2004 ◽  
Vol 71 ◽  
pp. 121-133 ◽  
Author(s):  
Ascan Warnholtz ◽  
Maria Wendt ◽  
Michael August ◽  
Thomas Münzel

Endothelial dysfunction in the setting of cardiovascular risk factors, such as hypercholesterolaemia, hypertension, diabetes mellitus and chronic smoking, as well as in the setting of heart failure, has been shown to be at least partly dependent on the production of reactive oxygen species in endothelial and/or smooth muscle cells and the adventitia, and the subsequent decrease in vascular bioavailability of NO. Superoxide-producing enzymes involved in increased oxidative stress within vascular tissue include NAD(P)H-oxidase, xanthine oxidase and endothelial nitric oxide synthase in an uncoupled state. Recent studies indicate that endothelial dysfunction of peripheral and coronary resistance and conductance vessels represents a strong and independent risk factor for future cardiovascular events. Ways to reduce endothelial dysfunction include risk-factor modification and treatment with substances that have been shown to reduce oxidative stress and, simultaneously, to stimulate endothelial NO production, such as inhibitors of angiotensin-converting enzyme or the statins. In contrast, in conditions where increased production of reactive oxygen species, such as superoxide, in vascular tissue is established, treatment with NO, e.g. via administration of nitroglycerin, results in a rapid development of endothelial dysfunction, which may worsen the prognosis in patients with established coronary artery disease.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 377
Author(s):  
Yunna Lee ◽  
Eunok Im

Cardiovascular diseases (CVDs) are the most common cause of morbidity and mortality worldwide. The potential benefits of natural antioxidants derived from supplemental nutrients against CVDs are well known. Remarkably, natural antioxidants exert cardioprotective effects by reducing oxidative stress, increasing vasodilation, and normalizing endothelial dysfunction. Recently, considerable evidence has highlighted an important role played by the synergistic interaction between endothelial nitric oxide synthase (eNOS) and sirtuin 1 (SIRT1) in the maintenance of endothelial function. To provide a new perspective on the role of natural antioxidants against CVDs, we focused on microRNAs (miRNAs), which are important posttranscriptional modulators in human diseases. Several miRNAs are regulated via the consumption of natural antioxidants and are related to the regulation of oxidative stress by targeting eNOS and/or SIRT1. In this review, we have discussed the specific molecular regulation of eNOS/SIRT1-related endothelial dysfunction and its contribution to CVD pathologies; furthermore, we selected nine different miRNAs that target the expression of eNOS and SIRT1 in CVDs. Additionally, we have summarized the alteration of miRNA expression and regulation of activities of miRNA through natural antioxidant consumption.


Sign in / Sign up

Export Citation Format

Share Document