scholarly journals A holistic approach to model electricity loads in cities

Author(s):  
S. Köhler ◽  
M. Betz ◽  
E. Duminil ◽  
U. Eicker ◽  
B. Schröter

AbstractTime-resolved, occupancy-dependent electricity load profiles at building level for city quarters or entire cities are important for planning authorities, project developers, utilities or other stakeholders in order to develop energy saving strategies and meet climate targets. Firstly, this information enables a more accurate modelling of renewable energy systems. Secondly, aspects like sector coupling, storage decisions and the impact of technologies such as electric vehicles or heat pumps on the grid can be considered. Thirdly, it allows a more detailed economic analysis. This paper contains the newly added features to the simulation environment SimStadt, which is used for strategic modelling of sustainable urban or regional areas with a spatial resolution at the building level. SimStadt interlinks 3D CityGML models with parameters for buildings physics to simulate energy demands and renewable energy potential. It was enhanced by the development of an electricity load profile generator with variable resolution and the addition of an hourly resolved PV potential analysis including a variable economic analysis. This enables e.g. the evaluation of photovoltaic potential with the associated investment, operating and levelized costs over the lifetime of hundreds of individual buildings in parallel. Together with additional electric building demand from heat pumps, electric vehicles or load shifting options through the use of battery storage, it will be possible to assess and compare the feasibility, benefits and economic viability of energy/electricity-related urban renewal measures in even greater detail and with a holistic perspective. The simulation platform enables the development of granular sustainable urban (sub)strategies and energy concepts through a holistic, time-resolved, building-specific approach to support transformation of the building stock to a sustainable, low-carbon one.

2014 ◽  
Vol 10 (1) ◽  
pp. 38-45
Author(s):  
Angel Terziev ◽  
Ivan Antonov ◽  
Rositsa Velichkova

Abstract Increasing the share of renewable energy sources is one of the core policies of the European Union. This is because of the fact that this energy is essential in reducing the greenhouse gas emissions and securing energy supplies. Currently, the share of wind energy from all renewable energy sources is relatively low. The choice of location for a certain wind farm installation strongly depends on the wind potential. Therefore the accurate assessment of wind potential is extremely important. In the present paper an analysis is made on the impact of significant possible parameters on the determination of wind energy potential for relatively large areas. In the analysis the type of measurements (short- and long-term on-site measurements), the type of instrumentation and the terrain roughness factor are considered. The study on the impact of turbulence on the wind flow distribution over complex terrain is presented, and it is based on the real on-site data collected by the meteorological tall towers installed in the northern part of Bulgaria. By means of CFD based software a wind map is developed for relatively large areas. Different turbulent models in numerical calculations were tested and recommendations for the usage of the specific models in flows modeling over complex terrains are presented. The role of each parameter in wind map development is made. Different approaches for determination of wind energy potential based on the preliminary developed wind map are presented.


2021 ◽  
Vol 5 (3) ◽  
pp. 56-61
Author(s):  
Ahmet Erhan AKAN

The decrease in fossil-based energy sources and increasing environmental problems increase the tendency to renewable energy sources day by day. The potential of renewable energy sources differs according to the region where the energy will be produced. For this reason, it is crucial to conduct a good feasibility study that deals with the selected systems from a technical and economic point of view before making an investment decision on energy conversion systems based on renewable energy sources. In this study, the most suitable equipment and capacities were investigated by examining the techno-economic analysis of a hybrid system created with wind-solar renewable energies for a detached house, which is considered off-grid, in a rural area of Tekirdağ province (40o58.7ı N, 27o30.7ı E). Investigations were carried out using the HOMER Pro (Hybrid Optimization Model for Electric Renewable) program. The wind and solar energy potential of Tekirdağ province were obtained from the NASA renewable energy resources database added to the HOMER Pro program. The daily electricity requirement of the sample house was chosen as 11.27 kWh, and the current peak electrical load was chosen as 2.39 kW. A wind turbine is connected to the AC busbars, solar collectors and battery group connected to the DC busbars, and a converter that converts energy between AC and DC busbars in the energy conversion system. In order to determine the optimum capacities of the system elements, 27486 different simulations were performed by HOMER Pro. The selection of the most suitable system among these was determined according to the lowest net present cost (NPC) value. In addition, the energy production capacities that will occur in the case of different wind speeds were also investigated. Accordingly, the system to be installed with a solar panel with a capacity of 6.25 kW, PV-MPPT with a capacity of 1 kW, 2 wind turbines with a capacity of 1 kW, 8 Lithium-ion batteries with a capacity of 6V-167 Ah, and a converter with a capacity of 2.5 kW has been determined will generate electrical energy of 5433 kWh per year. In addition, it has been determined that 61.8% of this produced energy will be obtained from solar energy and 38.2% from wind energy, and the simple payback period of the investment will be 14 years. It is thought that this study will provide valuable information to researchers and investors.


Author(s):  
Praveen Cheekatamarla ◽  
Vishaldeep Sharma ◽  
Bo Shen

Abstract Economic and population growth is leading to increased energy demand across all sectors – buildings, transportation, and industry. Adoption of new energy consumers such as electric vehicles could further increase this growth. Sensible utilization of clean renewable energy resources is necessary to sustain this growth. Thermal needs in a building pose a significant challenge to the energy infrastructure. Supporting the current and future building thermal energy needs to offset the total electric demand while lowering the carbon footprint and enhancing the grid flexibility is presented in this study. Performance assessment of heat pumps, renewable energy, non-fossil fuel-based cogeneration systems, and their hybrid configurations was conducted. The impact of design configuration, coefficient of performance (COP), electric grid's primary energy efficiency on the key attributes of total carbon footprint, life cycle costs, operational energy savings, and site-specific primary energy efficiency are analyzed and discussed in detail.


Author(s):  
Abdeen Mustafa Omer

The move towards a low-carbon world, driven partly by climate science and partly by the business opportunities it offers, will need the promotion of environmentally friendly alternatives, if an acceptable stabilisation level of atmospheric carbon dioxide is to be achieved. This chapter presents a comprehensive review of energy sources, and the development of sustainable technologies to explore these energy sources. It also includes potential renewable energy technologies, efficient energy systems, energy savings techniques and other mitigation measures necessary to reduce climate changes. The chapter concludes with the technical status of the ground source heat pumps (GSHP) technologies. The purpose of this study, however, is to examine the means of reduction of energy consumption in buildings, identify GSHPs as an environmental friendly technology able to provide efficient utilisation of energy in the buildings sector.


2020 ◽  
Vol 184 ◽  
pp. 01070
Author(s):  
Ayani Nandi ◽  
Vikram Kumar Kamboj

Daily load demand for industrial, residential and commercial sectors are changing day by day. Also, inclusion of e-mobility has totally effected the operations of realistic power sector. Hence, to meet this time varying load demand with minimum production cost is very challenging. The proposed research work focuses on the mathematical formulation of profit based unit commitment problem of realistic power system considering the impact of battery electric vehicles, hybrid electric vehicles and plug in electric vehicles and its solution using Intensify Harris Hawks Optimizer (IHHO). The coordination of plants with each other is named as Unit commitment of plants in which the most economical patterns of the generating station is taken so as to gain low production cost with higher reliability. But with the increase in industrialization has affected the environment badly so to maintain the balance between the generation and environment a new thinking of generating low cost power with high reliability by causing less harm to environment i.e. less emission of flue gases is adopted by considering renewable energy sources.


2020 ◽  
Author(s):  
Kaan Yamanturk ◽  
Cihan Dogruoz

As it is known, the utilization and production of renewable energy resources are very important in recent years. Due to its geological structural formations, Turkey has a serious geothermal energy potential as a renewable energy resource comparing with the other countries. West side of Turkey has also a critical role to use the geothermal energy resources. In these fields, geothermal is mostly used in electricity generation, greenhouse heating and locational requirements. The components while producing the geothermal water from wells such as heating pumps, re-injection pipes and other equipment are also significant. In this study, coefficient of performance (COP) utilizing in heat pumps has been investigated and the new approach to find out the parameter has been identified. Based on COP equation, the formula of COP has been re-coded on Dev C++ compiler by using C++ computer language in order to focus on the importance of computer aided applications in geothermal energy sector. There are no more studies showing the COP with C++ codes in literature. On the other hand, Germencik region, in the west side of Turkey, has been evaluated and the production processes by Guris Construction and Engineering Co. Inc. have been explained in the study. Moreover, the potential of Turkey has also been mentioned in this study. The aim of the study is to examine the Germencik region geothermal energy potential and to improve the coefficient of performance by using C++ in heat pumps. The result of this study shows us the Germencik region has an important potential and the computer aided technologies can also be adapted easily into the processes while producing geothermal energy.


Author(s):  
Rilwan O. Oliyide ◽  
Liana M. Cipcigan

The impacts of uptake and electricity load profiles of Electric Vehicles (EVs) and Heat Pumps (HPs) on the low voltage (LV) distribution networks were analyzed. The United Kingdom (UK) has a legally mandated policy concerning reduction of greenhouse gasses (GHGs) emissions. Therefore, the integration of low carbon technologies (LCTs) especially EVs and HPs at the LV networks is expected to increase in the drive to reducing the GHGs emissions. Future uptake scenarios, adapted from the National Grid studies, of EVs and HPs were developed for a real and typical urban LV distribution network in Great Britain (GB). Gridlab-D, an agent-based power system simulation software, was used to model the LV distribution network. The model was run for four different scenarios considering seasonal load profiles and projected EVs and HPs uptakes for each of the year 2020, 2030, 2040 and 2050 respectively. The results were analyzed in terms of transformer loading, voltage profiles of the feeders, and the ampacity loading of the cables for the different scenarios of the years.


Author(s):  
Boxiao Chen ◽  
Xiuli Chao ◽  
Yan Fu ◽  
Margaret Strumolo ◽  
Michael A. Tamor

Both automakers and electricity generators are facing increasingly more stringent greenhouse gas (GHG) emission targets. With the introduction of plug-in hybrid and electric vehicles, the transportation and electricity generation sectors become connected. This provides an opportunity for both sectors to work jointly to achieve cost efficient reduction of CO2 emissions. Due to the low cost and low carbon content of natural gas (NG), NG enabled vehicles are drawing increasing attention. With GHG targets rapidly decreasing, how to judiciously choose among plug-in hybrid vehicles, electric vehicles, NG-enabled vehicles, and gasoline vehicles to save societal cost is worth serious consideration. On the other hand, gasoline and NG prices play an important role in this decision-making process. In order to estimate the impact of gasoline and NG prices and quantify the benefit of the collaboration between automakers and electricity generators, an optimization model is developed to evaluate the total societal cost and CO2 emissions for both sectors. Various scenario analyses are conducted to understand the cost and capacity planning differences when gasoline and NG prices vary while the two sectors can work jointly or independently to meet the CO2 emission constraints. These results help us understand the impact of gasoline and NG prices in achieving GHG reduction targets for the two major sectors of CO2 emissions in the United States.


2019 ◽  
Vol 11 (10) ◽  
pp. 2828 ◽  
Author(s):  
Abdul Conteh ◽  
Mohammed Elsayed Lotfy ◽  
Kiptoo Mark Kipngetich ◽  
Tomonobu Senjyu ◽  
Paras Mandal ◽  
...  

Like in most developing countries, meeting the load demand and reduction in transmission grid bottlenecks remains a significant challenge for the power sector in Sierra Leone. In recent years, research attention has shifted to demand response (DR) programs geared towards improving the supply availability and quality of energy markets in developed countries. However, very few studies have discussed the implementation of suitable DR programs for developing countries, especially when utilizing renewable energy (RE) resources. In this paper, using the Freetown’s peak load demand data and the price elasticity concept, the interruptible demand response (DR) program has been considered for maximum demand index (MDI) customers. Economic analysis of the energy consumption, customer incentives, benefits, penalties and the impact on the load demand are analyzed, with optimally designed energy management for grid-integrated battery energy storage system (BESS) and photovoltaic (PV)-hybrid system using the genetic algorithm (GA). Five scenarios are considered to confirm the effectiveness and robustness of the proposed scheme. The results show the economic superiority of the proposed DR program’s approach for both customers and supplier benefits. Moreover, RE inclusion proved to be a practical approach over the project lifespan, compared to the diesel generation alternative.


Sign in / Sign up

Export Citation Format

Share Document