scholarly journals Sequential sporadic-E layers at low latitudes in the Indian sector

1999 ◽  
Vol 17 (4) ◽  
pp. 519-525 ◽  
Author(s):  
P. T. Jayachandran ◽  
P. Sri Ram ◽  
P. V. S. Rama Rao ◽  
V. V. Somayajulu

Abstract. A study of the formation and movement of sequential Sporadic-E layers observed during the night-time hours at two Indian low-latitude stations, SHAR (dip 10°N) and Waltair (dip 20°N) shows that the layer are formed around 19:00 h. IST at altitudes of ~180 km. They descend to the normal E-region altitude of about 100 km in three to four hours and becomes blanketing type of Es before they disappear. However, the absence of these descending layers at an equatorial station, Trivandrum (dip 2°N) gives the experimental evidence for wind shear theory. The meridional neutral wind derived from the height variation of the F-layer showed significant poleward wind during the descent of these layers. Hence it is inferred that these layers are formed as a consequence of the convergence of plasma by the poleward wind and the equatorward propagating gravity waves (inferred from the height fluctuations of F-layer).Key words. Ionosphere (active experiments; equatorial ionosphere · ionospheric irregularities)

2001 ◽  
Vol 19 (1) ◽  
pp. 59-69 ◽  
Author(s):  
H. Chandra ◽  
S. Sharma ◽  
C. V. Devasia ◽  
K. S. V. Subbarao ◽  
R. Sridharan ◽  
...  

Abstract. Rapid radio soundings were made over Ahmedabad, a low latitude station during the period 16–20 November 1998 to study the sporadic-E layer associated with the Leonid shower activity using the KEL Aerospace digital ionosonde. Hourly ionograms for the period 11 November to 24 November were also examined during the years from 1994 to 1998. A distinct increase in sporadic-E layer occurrence is noticed on 17, 18 and 19 November from 1996 to 1998. The diurnal variations  of  f0Es and fbEs also show significantly enhanced values for the morning hours of 18 and 19 November 1998. The ionograms clearly show strong sporadic-E reflections at times of peak shower activity with multiple traces in the altitude range of 100–140 km in few ionograms. Sporadic-E layers with multiple structures in altitude are also seen in some of the ionograms (quarter hourly) at Thumba, situated near the magnetic equator. Few of ionograms recorded at Kodaikanal, another equatorial station, also show sporadic- E reflections in spite of the transmitter power being significantly lower. These new results highlighting the effect of intense meteor showers in the equatorial and low latitude E-region are presented.Key words. Ionosphere (equatorial ionosphere) – Radio science (ionospheric physics)


1997 ◽  
Vol 15 (7) ◽  
pp. 925-934 ◽  
Author(s):  
A. Bourdillon ◽  
E. Lefur ◽  
C. Haldoupis ◽  
Y. Le Roux ◽  
J. Ménard ◽  
...  

Abstract. HF radar observations of mid-latitude spo- radic-E irregularities carried out with the Valensole radar in South France are compared with simultaneous ionosonde measurements underneath the irregularity zones. In a previous study of Valensole radar data, it has been shown that HF backscatter from the night-time mid-latitude E region is usually associated with large- scale wave-like modulations. To obtain more informa- tion on the geophysical conditions prevailing during backscatter events, a new experiment was performed which also included a vertical ionosonde beneath the scattering region. The data to be presented here are from two periods when radar scattering appeared simulta- neously with large variations in the virtual height and the Doppler velocity of F-layer re¯ected echoes mea- sured with the vertical ionosonde, indicating very clearly the passage of atmospheric gravity waves (AGWs). The e.ect of the atmospheric waves on the sporadic-E layer is not always as marked as it is in the F region. In the ®rst event, the passage of the AGWs is accompanied by an upward followed by a downward movement of the Es-layer. The apparent descending movement of the Es-layer from 135 to 110 km in less than 10 min corresponded to a positive (downward) Doppler velocity of 35 m/s measured by the vertical ionosonde, and was accompanied by a range variation in the radar scattering region with a negative rate of about 90±110 m/s. In the second event, the Es-layer is not as strongly disturbed as in the previous one, but, nevertheless, the range varia- tions of the scattering region can still be associated with height ¯uctuations of the Es-layer.


2021 ◽  
Author(s):  
Mani Sivakandan ◽  
Jorge L Chau ◽  
Carlos Martinis ◽  
Yuichi Otsuka ◽  
Jens Mielich ◽  
...  

<p>Northwest to southeast phase fronts with southwestward moving features are commonly observed in the nighttime midlatitude ionosphere during the solstice months at low solar activity. These features are identified as nighttime MSTIDs (medium scale traveling ionospheric disturbances). Initially, they were considered to be a manifestation of neutral atmospheric gravity waves. Later on, investigations showed that the nighttime MSTIDs are electrified in nature and mostly confined to the mid and low latitude ionosphere. Although the overall characteristics of the nighttime MSTIDs are mostly well understood, the causative mechanisms are not well known. Perkins instability mechanism was believed to be the cause of nighttime MSTIDs, however, the growth rate of the instability is too small to explain the perturbations observed. Recently, model simulations and observational studies suggest that coupling between sporadic-E layers and other type of E-region instabilities, and the F region may be relevant to explain the generation of the MSTIDs.</p><p>In the present study simultaneous observation from OI 630 nm all-sky airglow imager, GPS-TEC, ionosonde and Meteor radars, are used to investigate the role of E and F region coupling on the generation of MSTIDs .Nighttime MSTIDs observed on three nights (14 March 2020, 23 March 2020 and 28 May 2020) in the OI 630 nm airglow images over Kuehlungsborn (54°07'N; 11°46'E, 53.79N  mag latitude), Germany, are presented. Simultaneous detrended GPS-TEC measurements also shows presence of MSTIDs on these nights. In addition, simultaneous ionosonde observations over Juliusruh (54°37.7'N 13°22.5'E) show spread-F in the ionograms as well as sporadic-E layer occurrence.  Furthermore, we also investigate the MLT region wind variations during these nights. The role of Es-layers and the interplay between the winds and Es-layers role on the generation of the MSTIDs will be discussed in detail in this presentation.</p><p> </p>


2004 ◽  
Vol 22 (11) ◽  
pp. 3799-3804 ◽  
Author(s):  
C. J. Pan ◽  
P. B. Rao

Abstract. We report on the field-aligned irregularities observed in the low-latitude sporadic E-layer (Es) with the Gadanki (13.5° N, 79.2° E; geomagnetic latitude 6.3° N) VHF radar. The radar was operated intermittently for 15 days during the summer months in 1998 and 1999, for both daytime and nighttime observation. The total observation periods are 161h for the nighttime and 68h for the daytime. The observations were used to study the percentage of occurrence of the E-region echoes for both daytime and nighttime. The statistical characteristics of the mean radial velocity and spectral width are presented for three cases based on the echo occurrence characteristics and the altitude of observations (from 90 to 140km ranges), namely, the lower E-region daytime (90-110km), the lower E-region nighttime (90-105km) and the upper E-region nighttime (105-140km) echoes. The results are compared with that of Piura, a low-latitude station located at about the same geomagnetic latitude, but to the south of the equator. By comparing the behaviors of the lower E-region radar echoes of the summer months between Gadanki and Piura, we find that the lower altitude echoes below about 100km are rarely reported in Piura but commonly seen in Gadanki. Features of the nighttime echoes observed by these two radars are quite similar but daytime FAI echoes are again seldom detected by Piura.


1997 ◽  
Vol 15 (7) ◽  
pp. 908-917 ◽  
Author(s):  
C. Haldoupis ◽  
D. T. Farley ◽  
K. Schlegel

Abstract. This paper presents more data on the properties of type-1 irregularities in the nighttime mid-latitude E-region ionosphere. The measurements were made with a 50-MHz Doppler radar system operating in Crete, Greece. The type-1 echoes last from several seconds to a few minutes and are characterized by narrow Doppler spectra with peaks corresponding to wave phase velocities of 250–350 m/s. The average velocity of 285 m/s is about 20% lower than nominal E-region ion-acoustic speeds, probably because of the presence of heavy metallic ions in the sporadic-E-layers that appear to be associated with the mid-latitude plasma instabilities. Sometimes the type-1 echoes are combined with a broad spectrum of type-2 echoes; at other times they dominate the spectrum or may appear in the absence of any type-2 spectral component. We believe these echoes are due to the modified two-stream plasma instability driven by a polarization electric field that must be larger than 10 mV/m. This field is similar in nature to the equatorial electrojet polarization field and can arise when patchy nighttime sporadic-E-layers have the right geometry.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Cesar E. Valladares ◽  
Matthew A. Hei

This scientific report presents the results of a dedicated experiment that was conducted within the framework of the Low-latitude ionospheric Sensor Network (LISN) observatory to measure the characteristics of medium-scale (hundreds of km) Traveling Ionospheric Disturbances (TIDs) as they transit through the low-latitude ionosphere. A small array of 3 GPS receivers separated by 4-5 km placed in a triangular configuration was installed near Huancayo in Peru possessing several characteristics of a radio-interferometer. During the campaign days, 17–30 July 2008, TIDs were observed daily. On July 20, 2008 between 22 and 24 UT several TIDs moved across the small array of GPS receivers with a velocity near 130 m/s, were directed northward and had wavelengths close to 450 km. Other GPS receivers that were operating hundreds of km away from Huancayo show also similar TEC traces and provide a phase velocity equal to 150 m/s. This value was measured using the GPS at Piura, Cuzco and Huancayo. Based on this positive result, we conclude that small and/or regional arrays of GPS receivers can be used at low latitudes to study the role that gravity waves may have on seeding plasma bubbles.


1995 ◽  
Vol 13 (8) ◽  
pp. 871-878 ◽  
Author(s):  
S. S. Hari ◽  
B. V. Krishna Murthy

Abstract. Night-time F-region vertical electrodynamic drifts at the magnetic equatorial station, Trivandrum are obtained for a period of 2 years, 1989 and 1990 (corresponding to solar cycle maximum epoch), using ionosonde h'F data. The seasonal variation of the vertical drift is found to be associated with the longitudinal gradients of the thermospheric zonal wind. Further, the seasonal variation of the prereversal enhancement of the vertical drift is associated with the time difference between the sunset times of the conjugate E-regions (magnetic field line linked to F-region) which is indicative of the longitudinal gradients of the conductivity (of the E-region). The vertical drifts and the causative zonal electric fields at Trivandrum are compared with those at Jicamarca and F-region zonal electric field models. It is seen that the night-time downward drift (as also the causative westward electric field) at Jicamarca is greater than that at Trivandrum. The prereversal enhancement of the drift is greater at Jicamarca than at Trivandrum during the summer and the equinoxes, whereas during the winter the opposite is the case.


2004 ◽  
Vol 22 (9) ◽  
pp. 3145-3153 ◽  
Author(s):  
B. W. Reinisch ◽  
M. Abdu ◽  
I. Batista ◽  
G. S. Sales ◽  
G. Khmyrov ◽  
...  

Abstract. Directional ionogram and F-region drift observations were conducted at seven digisonde stations in South America during the COPEX campaign from October to December 2002. Five stations in Brazil, one in Argentina, and one in Peru, monitored the ionosphere across the continent to study the onset and development of F-region density depletions that cause equatorial spread F (ESF). New ionosonde techniques quantitatively describe the prereversal uplifting of the F layer at the magnetic equator and the eastward motion of the depletions over the stations. Three of the Brazilian stations were located along a field line with a 350-km apex over the equator to investigate the relation of the occurrence of ESF and the presence of sporadic E-layers at the two E-region intersections of the field line. No simple correlation was found.


2010 ◽  
Vol 10 (6) ◽  
pp. 1197-1208 ◽  
Author(s):  
P. Nenovski ◽  
Ch. Spassov ◽  
M. Pezzopane ◽  
U. Villante ◽  
M. Vellante ◽  
...  

Abstract. Ionograms from Rome (41.8N, 12.5E) and Sofia (42.4N, 23.2E) ionospheric stations during earthquake (EQ) activity with magnitude (M) between 5 and 6 in Central Italy are analyzed. It is found that several ionospheric disturbances occur in the intermediate E-F region before the EQ shock. In fact, besides sporadic E (Es) layer development (of type h) of short duration (transients), fmin increase, trace gaps near the critical frequencies, and E region trace disappearance are also observed within one to three hours before the EQ shock. Before the EQ shocks we find that the F2 region parameters are practically undisturbed. The only exception is the so-called fork trace that appears mostly near the critical frequency of the F2 region. Acoustic gravity waves (AGW) are suggested as one of the possible sources of transients observed in the ionosphere before the EQ shock.


2018 ◽  
Vol 36 (2) ◽  
pp. 587-593 ◽  
Author(s):  
Laysa C. A. Resende ◽  
Christina Arras ◽  
Inez S. Batista ◽  
Clezio M. Denardini ◽  
Thainá O. Bertollotto ◽  
...  

Abstract. This work presents new results about sporadic E-layers (Es layers) using GPS (global positioning system) radio occultation (RO) measurements obtained from the FORMOSAT-3/COSMIC satellites and digisonde data. The RO profiles are used to study the Es layer occurrence as well as its intensity of the signal-to-noise ratio (SNR) of the 50 Hz GPS L1 signal. The methodology was applied to identify the Es layer on RO measurements over Cachoeira Paulista, a low-latitude station in the Brazilian region, in which the Es layer development is not driven tidal winds only as it is at middle latitudes. The coincident events were analyzed using the RO technique and ionosonde observations during the year 2014 to 2016. We used the electron density obtained using the blanketing frequency parameter (fbEs) and the Es layer height (h'Es) acquired from the ionograms to validate the satellite measurements. The comparative results show that the Es layer characteristics extracted from the RO measurements are in good agreement with the Es layer parameters from the digisonde. Keywords. Ionosphere (ionosphere–atmosphere interactions)


Sign in / Sign up

Export Citation Format

Share Document