Levodopa increases oxidative stress and repulsive guidance molecule A levels: a pilot study in patients with Parkinson’s disease

2016 ◽  
Vol 123 (4) ◽  
pp. 401-406 ◽  
Author(s):  
Thomas Müller ◽  
Isabel Trommer ◽  
Siegfried Muhlack ◽  
Bernhard K. Mueller
2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Wakana Oda ◽  
Yuki Fujita ◽  
Kousuke Baba ◽  
Hideki Mochizuki ◽  
Hitoshi Niwa ◽  
...  

AbstractRepulsive guidance molecule-a (RGMa), a glycosylphosphatidylinositol-anchored membrane protein, has diverse functions in axon guidance, cell patterning, and cell survival. Inhibition of RGMa attenuates pathological dysfunction in animal models of central nervous system (CNS) diseases including spinal cord injury, multiple sclerosis, and neuromyelitis optica. Here, we examined whether antibody-based inhibition of RGMa had therapeutic effects in a mouse model of Parkinson’s disease (PD). We treated mice with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and found increased RGMa expression in the substantia nigra (SN). Intraventricular, as well as intravenous, administration of anti-RGMa antibodies reduced the loss of tyrosine hydroxylase (TH)-positive neurons and accumulation of Iba1-positive microglia/macrophages in the SN of MPTP-treated mice. Selective expression of RGMa in TH-positive neurons in the SN-induced neuronal loss/degeneration and inflammation, resulting in a progressive movement disorder. The pathogenic effects of RGMa overexpression were attenuated by treatment with minocycline, which inhibits microglia and macrophage activation. Increased RGMa expression upregulated pro-inflammatory cytokine expression in microglia. Our observations suggest that the upregulation of RGMa is associated with the PD pathology; furthermore, inhibitory RGMa antibodies are a potential therapeutic option.


2017 ◽  
Vol 37 (39) ◽  
pp. 9361-9379 ◽  
Author(s):  
Joanna A. Korecka ◽  
Elizabeth B. Moloney ◽  
Ruben Eggers ◽  
Barbara Hobo ◽  
Sanny Scheffer ◽  
...  

2012 ◽  
Vol 11 (4) ◽  
pp. 430-438 ◽  
Author(s):  
Marcella Reale ◽  
Mirko Pesce ◽  
Medha Priyadarshini ◽  
Mohammad A Kamal ◽  
Antonia Patruno

Author(s):  
Amit Batla ◽  
Sara Simeoni ◽  
Tomoyuki Uchiyama ◽  
Lorenzo deMin ◽  
Joanne Baldwin ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 4676
Author(s):  
Katja Badanjak ◽  
Sonja Fixemer ◽  
Semra Smajić ◽  
Alexander Skupin ◽  
Anne Grünewald

With the world’s population ageing, the incidence of Parkinson’s disease (PD) is on the rise. In recent years, inflammatory processes have emerged as prominent contributors to the pathology of PD. There is great evidence that microglia have a significant neuroprotective role, and that impaired and over activated microglial phenotypes are present in brains of PD patients. Thereby, PD progression is potentially driven by a vicious cycle between dying neurons and microglia through the instigation of oxidative stress, mitophagy and autophagy dysfunctions, a-synuclein accumulation, and pro-inflammatory cytokine release. Hence, investigating the involvement of microglia is of great importance for future research and treatment of PD. The purpose of this review is to highlight recent findings concerning the microglia-neuronal interplay in PD with a focus on human postmortem immunohistochemistry and single-cell studies, their relation to animal and iPSC-derived models, newly emerging technologies, and the resulting potential of new anti-inflammatory therapies for PD.


2015 ◽  
Vol 9 ◽  
Author(s):  
Javier Blesa ◽  
Ines Trigo-Damas ◽  
Anna Quiroga-Varela ◽  
Vernice R. Jackson-Lewis

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1874
Author(s):  
Suwei Chen ◽  
Sarah J. Annesley ◽  
Rasha A. F. Jasim ◽  
Paul R. Fisher

Mitochondrial dysfunction has been implicated in the pathology of Parkinson’s disease (PD). In Dictyostelium discoideum, strains with mitochondrial dysfunction present consistent, AMPK-dependent phenotypes. This provides an opportunity to investigate if the loss of function of specific PD-associated genes produces cellular pathology by causing mitochondrial dysfunction with AMPK-mediated consequences. DJ-1 is a PD-associated, cytosolic protein with a conserved oxidizable cysteine residue that is important for the protein’s ability to protect cells from the pathological consequences of oxidative stress. Dictyostelium DJ-1 (encoded by the gene deeJ) is located in the cytosol from where it indirectly inhibits mitochondrial respiration and also exerts a positive, nonmitochondrial role in endocytosis (particularly phagocytosis). Its loss in unstressed cells impairs endocytosis and causes correspondingly slower growth, while also stimulating mitochondrial respiration. We report here that oxidative stress in Dictyostelium cells inhibits mitochondrial respiration and impairs phagocytosis in an AMPK-dependent manner. This adds to the separate impairment of phagocytosis caused by DJ-1 knockdown. Oxidative stress also combines with DJ-1 loss in an AMPK-dependent manner to impair or exacerbate defects in phototaxis, morphogenesis and growth. It thereby phenocopies mitochondrial dysfunction. These results support a model in which the oxidized but not the reduced form of DJ-1 inhibits AMPK in the cytosol, thereby protecting cells from the adverse consequences of oxidative stress, mitochondrial dysfunction and the resulting AMPK hyperactivity.


2021 ◽  
Vol 67 ◽  
pp. 101263
Author(s):  
P.A. Dionísio ◽  
J.D. Amaral ◽  
C.M.P. Rodrigues

Sign in / Sign up

Export Citation Format

Share Document