Free variable mass nonlocal systems, jerks, and snaps, and their implications in rotating fluids in rockets

2020 ◽  
Author(s):  
Rami Ahmad El-Nabulsi
2005 ◽  
Vol 46 (10) ◽  
pp. 102901 ◽  
Author(s):  
J. P. Santos ◽  
L. O. Silva

Author(s):  
M. K. Lamvik ◽  
A. V. Crewe

If a molecule or atom of material has molecular weight A, the number density of such units is given by n=Nρ/A, where N is Avogadro's number and ρ is the mass density of the material. The amount of scattering from each unit can be written by assigning an imaginary cross-sectional area σ to each unit. If the current I0 is incident on a thin slice of material of thickness z and the current I remains unscattered, then the scattering cross-section σ is defined by I=IOnσz. For a specimen that is not thin, the definition must be applied to each imaginary thin slice and the result I/I0 =exp(-nσz) is obtained by integrating over the whole thickness. It is useful to separate the variable mass-thickness w=ρz from the other factors to yield I/I0 =exp(-sw), where s=Nσ/A is the scattering cross-section per unit mass.


2018 ◽  
Vol 5 (1) ◽  
Author(s):  
Erik Wardhana, MM.

This study entitled "Analysis of Effect of Climate Organization and Competence Againt Employee PT. Hutama Karya ". The purpose of this study was to obtain information on the relationship between the free variable that organizational climate (X1) and competence (X2) with the dependent variable is employee performance (Y), either partially or simultaneously, This study used survey research methods with the correlational approach and predictive, which aims for the relationship and influence between independent and dependent variables. The sampling technique can be done randomly (simple random sampling) of 852 employees, which is considered to resprentatif is 89 people. And to solve problems, to analyze and examine the relationship and influence between the independent variables on the dependent variable used models kausalistik through regression analysis with SPSS 14.0


ACS Omega ◽  
2020 ◽  
Vol 5 (45) ◽  
pp. 29209-29221
Author(s):  
Ping Yue ◽  
Hongnan Yang ◽  
Chuanjian He ◽  
G. M. Yu ◽  
James J. Sheng ◽  
...  

2021 ◽  
pp. 107754632110004
Author(s):  
Sanjukta Chakraborty ◽  
Aparna (Dey) Ghosh ◽  
Samit Ray-Chaudhuri

This article presents the design of a tuned mass damper with a conical spring to enable tuning to the natural frequency of the system at multiple values, as may be convenient in case of a system with fluctuations in the mass. The principle and design procedure of the conical spring in the context of a varying mass system are presented. A passive feedback control mechanism based on a simple pulley-mass system is devised to cater to the multi-tuning requirements. A design example of an elevated water tank with fluctuating water content, subjected to ground excitation, is considered to numerically illustrate the efficiency of such a tuned mass damper associated with the conical spring. The conical spring is designed based on the tuning requirements at different mass conditions of the elevated water tank by satisfying the allowable load bearing capacity of the spring. Comparisons are made with the conventional passive tuned mass damper with a linear spring tuned to the full tank condition. Results from time history analysis reveal that the conical spring-tuned mass damper can be successfully designed to remain tuned and thereby achieve significant response reductions under stiffening conditions of the primary structure, whereas the linear spring-tuned mass damper suffers performance degradation because of detuning, whenever there is any fluctuation in the system mass.


2021 ◽  
Vol 22 (2) ◽  
pp. 1-37
Author(s):  
Christopher H. Broadbent ◽  
Arnaud Carayol ◽  
C.-H. Luke Ong ◽  
Olivier Serre

This article studies the logical properties of a very general class of infinite ranked trees, namely, those generated by higher-order recursion schemes. We consider, for both monadic second-order logic and modal -calculus, three main problems: model-checking, logical reflection (a.k.a. global model-checking, that asks for a finite description of the set of elements for which a formula holds), and selection (that asks, if exists, for some finite description of a set of elements for which an MSO formula with a second-order free variable holds). For each of these problems, we provide an effective solution. This is obtained, thanks to a known connection between higher-order recursion schemes and collapsible pushdown automata and on previous work regarding parity games played on transition graphs of collapsible pushdown automata.


2007 ◽  
Vol 366 (1-2) ◽  
pp. 91-96 ◽  
Author(s):  
J.E. Howard

2021 ◽  
pp. 1-22
Author(s):  
Daisuke Kurisu ◽  
Taisuke Otsu

This paper studies the uniform convergence rates of Li and Vuong’s (1998, Journal of Multivariate Analysis 65, 139–165; hereafter LV) nonparametric deconvolution estimator and its regularized version by Comte and Kappus (2015, Journal of Multivariate Analysis 140, 31–46) for the classical measurement error model, where repeated noisy measurements on the error-free variable of interest are available. In contrast to LV, our assumptions allow unbounded supports for the error-free variable and measurement errors. Compared to Bonhomme and Robin (2010, Review of Economic Studies 77, 491–533) specialized to the measurement error model, our assumptions do not require existence of the moment generating functions of the square and product of repeated measurements. Furthermore, by utilizing a maximal inequality for the multivariate normalized empirical characteristic function process, we derive uniform convergence rates that are faster than the ones derived in these papers under such weaker conditions.


Sign in / Sign up

Export Citation Format

Share Document