scholarly journals Identification of Chaboche–Lemaitre combined isotropic–kinematic hardening model parameters assisted by the fuzzy logic analysis

2020 ◽  
Author(s):  
M. Wójcik ◽  
A. Skrzat

AbstractA very good knowledge of material properties is required in the analysis of severe plastic deformation problems in which the classical material processing methods are accelerated by the application of the additional cyclic load. A general fuzzy logic-based approach is proposed for the analysis of experimental and numerical data in this paper. As an application of the fuzzy analysis, the calibration of Chaboche–Lemaitre model hardening parameters of PA6 aluminum is considered here. The experimental data obtained in a symmetrical strain-controlled cyclic tension–compression test were used to estimate the material’s hardening parameters. The numerically generated curves were compared to the experimental ones. For better fitting of numerical and experimental results, the optimization approach using the least-square method was applied. Unfortunately, commonly accepted calibration methods can provide various sets of hardening parameters. In order to choose the most reliable set, the fuzzy analysis was used. Primarily selected values of hardening parameters were assumed to be fuzzy input parameters. The error of the hysteresis loop approximation for each set was used to compute its membership function. The discrete value of this error was obtained in the defuzzification step. The correct selections of hardening parameters were verified in ratcheting and mean stress relaxation tests. The application of the fuzzy analysis has improved the convergence between experimental and numerical stress–strain curves. The fuzzy logic allows analyzing the variation of elastic–plastic material response when some imprecisions or uncertainties of input parameters are taken into consideration.

Author(s):  
Sushan Li ◽  
Roland Platz

Load-bearing mechanical structures like trusses face uncertainty in loading along with uncertainty in stress and strength, which are due to uncertainty in their development, production, and usage. According to the working hypothesis of the German Collaborative Research Center SFB 805, uncertainty occurs in processes that are not or only partial deterministic and can only be controlled in processes. The authors classify, compare, and evaluate four different direct methods to describe and evaluate the uncertainty of normal stress distribution in simple truss structures with one column, two columns, and three columns. The four methods are the direct Monte Carlo (DMC) simulation, the direct quasi-Monte Carlo (DQMC) simulation, the direct interval, and the direct fuzzy analysis with α-cuts, which are common methods for data uncertainty analysis. The DMC simulation and the DQMC simulation are categorized as probabilistic methods to evaluate the stochastic uncertainty. On the contrary, the direct interval and the direct fuzzy analysis with α-cuts are categorized as possibilistic methods to evaluate the nonstochastic uncertainty. Three different truss structures with increasing model complexity, a single-column, a two-column, and a three-column systems are chosen as reference systems in this study. Each truss structure is excited with a vertical external point load. The input parameters of the truss structures are the internal system properties such as geometry and material parameters, and the external properties such as magnitude and direction of load. The probabilistic and the possibilistic methods are applied to each truss structure to describe and evaluate its uncertainty in the developing phase. The DMC simulation and DQMC simulation are carried out with full or “direct” sample sets of model parameters such as geometry parameters and state parameters such as forces, and a sensitivity analysis is conducted to identify the influence of every model and state input parameter on the normal stress, which is the output variable of the truss structures. In parallel, the direct interval and the direct fuzzy analysis with α-cuts are carried out without altering and, therefore, they are direct approaches as well. The four direct methods are then compared based on the simulation results. The criteria of the comparison are the uncertainty in the deviation of the normal stress in one column of each truss structure due to varied model and state input parameters, the computational costs, as well as the implementation complexity of the applied methods.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Mohsen Saleh Asheghabadi ◽  
Xiaohui Cheng

In geotechnical mediums where the bearing capacity of upper layers of soil is not suitable for use of the shallow foundations, piles are usually used as deep foundations to transfer loads to the stronger lower layers. Here, the seismic behavior of single pile and pile group constructed in saturated soft kaolin clay under three different earthquakes using Abacus 3D software is investigated. The aluminum material considering the linear elastic model has been used for the piles, and the nonlinear kinematic hardening model with Von Mises failure criterion has been considered for clay. This model can consider the soil stiffness degradation by increasing the number of cyclic loading. Three different methods have been used to calibrate the model parameters, two of them are new methods. In all calibration methods, the cyclic shear and undrained cyclic triaxial tests are used. The results obtained from the numerical analysis of the soil-pile model are in relatively good agreement with the centrifuge model results. According to the results, the variation of earthquake frequency and intensity affects the bending moment created along the pile and also the distance between piles in a pile group affects the amount of the interaction between them.


2021 ◽  
Vol 13 (15) ◽  
pp. 2997
Author(s):  
Zheng Zhao ◽  
Weiming Tian ◽  
Yunkai Deng ◽  
Cheng Hu ◽  
Tao Zeng

Wideband multiple-input-multiple-output (MIMO) imaging radar can achieve high-resolution imaging with a specific multi-antenna structure. However, its imaging performance is severely affected by the array errors, including the inter-channel errors and the position errors of all the transmitting and receiving elements (TEs/REs). Conventional calibration methods are suitable for the narrow-band signal model, and cannot separate the element position errors from the array errors. This paper proposes a method for estimating and compensating the array errors of wideband MIMO imaging radar based on multiple prominent targets. Firstly, a high-precision target position estimation method is proposed to acquire the prominent targets’ positions without other equipment. Secondly, the inter-channel amplitude and delay errors are estimated by solving an equation-constrained least square problem. After this, the element position errors are estimated with the genetic algorithm to eliminate the spatial-variant error phase. Finally, the feasibility and correctness of this method are validated with both simulated and experimental datasets.


2021 ◽  
pp. 1-9
Author(s):  
Baigang Zhao ◽  
Xianku Zhang

Abstract To solve the problem of identifying ship model parameters quickly and accurately with the least test data, this paper proposes a nonlinear innovation parameter identification algorithm for ship models. This is based on a nonlinear arc tangent function that can process innovations on the basis of an original stochastic gradient algorithm. A simulation was carried out on the ship Yu Peng using 26 sets of test data to compare the parameter identification capability of a least square algorithm, the original stochastic gradient algorithm and the improved stochastic gradient algorithm. The results indicate that the improved algorithm enhances the accuracy of the parameter identification by about 12% when compared with the least squares algorithm. The effectiveness of the algorithm was further verified by a simulation of the ship Yu Kun. The results confirm the algorithm's capacity to rapidly produce highly accurate parameter identification on the basis of relatively small datasets. The approach can be extended to other parameter identification systems where only a small amount of test data is available.


Processes ◽  
2018 ◽  
Vol 6 (8) ◽  
pp. 126 ◽  
Author(s):  
Lina Aboulmouna ◽  
Shakti Gupta ◽  
Mano Maurya ◽  
Frank DeVilbiss ◽  
Shankar Subramaniam ◽  
...  

The goal-oriented control policies of cybernetic models have been used to predict metabolic phenomena such as the behavior of gene knockout strains, complex substrate uptake patterns, and dynamic metabolic flux distributions. Cybernetic theory builds on the principle that metabolic regulation is driven towards attaining goals that correspond to an organism’s survival or displaying a specific phenotype in response to a stimulus. Here, we have modeled the prostaglandin (PG) metabolism in mouse bone marrow derived macrophage (BMDM) cells stimulated by Kdo2-Lipid A (KLA) and adenosine triphosphate (ATP), using cybernetic control variables. Prostaglandins are a well characterized set of inflammatory lipids derived from arachidonic acid. The transcriptomic and lipidomic data for prostaglandin biosynthesis and conversion were obtained from the LIPID MAPS database. The model parameters were estimated using a two-step hybrid optimization approach. A genetic algorithm was used to determine the population of near optimal parameter values, and a generalized constrained non-linear optimization employing a gradient search method was used to further refine the parameters. We validated our model by predicting an independent data set, the prostaglandin response of KLA primed ATP stimulated BMDM cells. We show that the cybernetic model captures the complex regulation of PG metabolism and provides a reliable description of PG formation.


2015 ◽  
Vol 2015 ◽  
pp. 1-11
Author(s):  
A. Stanley Raj ◽  
D. Hudson Oliver ◽  
Y. Srinivas

Soft computing based geoelectrical data inversion differs from conventional computing in fixing the uncertainty problems. It is tractable, robust, efficient, and inexpensive. In this paper, fuzzy logic clustering methods are used in the inversion of geoelectrical resistivity data. In order to characterize the subsurface features of the earth one should rely on the true field oriented data validation. This paper supports the field data obtained from the published results and also plays a crucial role in making an interdisciplinary approach to solve complex problems. Three clustering algorithms of fuzzy logic, namely, fuzzyC-means clustering, fuzzyK-means clustering, and fuzzy subtractive clustering, were analyzed with the help of fuzzy inference system (FIS) training on synthetic data. Here in this approach, graphical user interface (GUI) was developed with the integration of three algorithms and the input data (AB/2 and apparent resistivity), while importing will process each algorithm and interpret the layer model parameters (true resistivity and depth). A complete overview on the three above said algorithms is presented in the text. It is understood from the results that fuzzy logic subtractive clustering algorithm gives more reliable results and shows efficacy of soft computing tools in the inversion of geoelectrical resistivity data.


1998 ◽  
Vol 507 ◽  
Author(s):  
M. Zeman ◽  
R.A.C.M.M. Van Swaaij ◽  
E. Schroten ◽  
L.L.A. Vosteen ◽  
J.W. Metselaar

ABSTRACTA calibration procedure for determining the model input parameters of standard a-Si:H layers, which comprise a single junction a-Si:H solar cell, is presented. The calibration procedure consists of: i) deposition of the separate layers, ii) measurement of the material properties, iii) fitting the model parameters to match the measured properties, iv) simulation of test devices and comparison with experimental results. The inverse modeling procedure was used to extract values of the most influential model parameters by fitting the simulated material properties to the measured ones. In case of doped layers the extracted values of the characteristic energies of exponentially decaying tail states are much higher than the values reported in literature. Using the extracted values of model parameters a good agreement between the measured and calculated characteristics of a reference solar cell was reached. The presented procedure could not solve directly an important issue concerning a value of the mobility gap in a-Si:H alloys.


In this paper, we have defined a new two-parameter new Lindley half Cauchy (NLHC) distribution using Lindley-G family of distribution which accommodates increasing, decreasing and a variety of monotone failure rates. The statistical properties of the proposed distribution such as probability density function, cumulative distribution function, quantile, the measure of skewness and kurtosis are presented. We have briefly described the three well-known estimation methods namely maximum likelihood estimators (MLE), least-square (LSE) and Cramer-Von-Mises (CVM) methods. All the computations are performed in R software. By using the maximum likelihood method, we have constructed the asymptotic confidence interval for the model parameters. We verify empirically the potentiality of the new distribution in modeling a real data set.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Jiang Shao ◽  
Ping Shi ◽  
Sijung Hu

Although two modes of elastic tube (ET) and vascular elasticity (VE) have been well explored for cuffless continuous blood pressure (BP) monitoring estimation, the initial calibration with these two models could be derived from different mathematical mechanisms for BP estimation. The study is aimed at evaluating the performance of VE and ET models by means of an advanced point-to-point (aPTP) pairing calibration. The cuff BPs were only taken up while the signals of PPG and ECG were synchronously acquired from individual subjects. Two popular VE models together with one representative ET model were designated to study aPTP as a unified assessment criterion. The VE model has demonstrated the stronger correlation r of 0.89 and 0.86 of SBP and DBP, respectively, and the lower estimated BP error of − 0.01 ± 5.90 (4.55) mmHg and 0.04 ± 4.40 (3.38) mmHg of SBP and DBP, respectively, than the ET model. With the ET model, there is a significant difference between the methods of conventional least-square (LS) calibration and aPTP calibration ( p < 0.05 ). These results showed that the VE model surpasses the ET model under the same uniform calibration. The outcome has been unveiled that the selection of initial calibration methods was vital to work out diastolic BP with the ET model. The study revealed an evident fact about initial sensitivity between the modes of different BP estimation and initial calibration.


Sign in / Sign up

Export Citation Format

Share Document