scholarly journals Cell wall characteristics during sexual reproduction of Mougeotia sp. (Zygnematophyceae) revealed by electron microscopy, glycan microarrays and RAMAN spectroscopy

PROTOPLASMA ◽  
2021 ◽  
Author(s):  
Charlotte Permann ◽  
Klaus Herburger ◽  
Martin Niedermeier ◽  
Martin Felhofer ◽  
Notburga Gierlinger ◽  
...  

AbstractMougeotia spp. collected from field samples were investigated for their conjugation morphology by light-, fluorescence-, scanning- and transmission electron microscopy. During a scalarifom conjugation, the extragametangial zygospores were initially surrounded by a thin cell wall that developed into a multi-layered zygospore wall. Maturing zygospores turned dark brown and were filled with storage compounds such as lipids and starch. While M. parvula had a smooth surface, M. disjuncta had a punctated surface structure and a prominent suture. The zygospore wall consisted of a polysaccharide rich endospore, followed by a thin layer with a lipid-like appaerance, a massive electron dense mesospore and a very thin exospore composed of polysaccharides. Glycan microarray analysis of zygospores of different developmental stages revealed the occurrence of pectins and hemicelluloses, mostly composed of homogalacturonan (HG), xyloglucans, xylans, arabino-galactan proteins and extensins. In situ localization by the probe OG7-13AF 488 labelled HG in young zygospore walls, vegetative filaments and most prominently in conjugation tubes and cross walls. Raman imaging showed the distribution of proteins, lipids, carbohydrates and aromatic components of the mature zygospore with a spatial resolution of ~ 250 nm. The carbohydrate nature of the endo- and exospore was confirmed and in-between an enrichment of lipids and aromatic components, probably algaenan or a sporopollenin-like material. Taken together, these results indicate that during zygospore formation, reorganizations of the cell walls occured, leading to a resistant and protective structure.

2020 ◽  
Author(s):  
Francesco Germano ◽  
Davide Testi ◽  
Luisa Campagnolo ◽  
Manuel Scimeca ◽  
Claudio Arcuri

AbstractCell-wall-deficient bacteria are those that lack cell walls and live in a pleomorphic state. The genus Mycoplasma and L-form bacteria are both members of this group. The aim of this study was to search cell-wall-deficient bacteria in periodontal biofilm and link their presence to periodontal disease. Eighty-nine individuals were recruited and divided into three groups: periodontally healthy individuals, individuals with chronic periodontitis, and those with aggressive periodontitis. The presence of cell-wall-deficient bacteria was detected in freshly collected biofilm by light microscopy, transmission electron microscopy (TEM) with and without electron microscopy in situ hybridization, atomic force microscopy and DNA stain (Hoechst). A new dichotomic index of classification for prevalence and morphologic variants was developed to classify cell-wall-deficient bacteria in periodontal biofilm. Cell-wall-deficient bacteria were found in periodontal biofilm and classified into Protoplastic, Everted, Filament and Intracellular forms, the last one mainly associated with aggressive periodontitis. We also assessed the prevalence of periodontopathic bacteria by means of polymerase chain-reaction (PCR) and found no clear, statistically significant, correlation among periodontal pathogens tested (except T. denticola) that allowed individuals with chronic periodontitis to be distinguished from those with aggressive periodontitis. Association between cell-wall-deficient bacteria and periodontal condition was: periodontally healthy, 3.3% (1/30); individuals with chronic periodontitis, 30.6% (11/36); and those with aggressive periodontitis, 100% (23/23). Cell-wall-deficient bacteria were detected in periodontal biofilm and linked to aggressive periodontitis.


Author(s):  
Francesco Germano ◽  
Francesco Germano ◽  
Davide Testi ◽  
Luisa Campagnolo ◽  
Manuel Scimeca ◽  
...  

Cell-wall-deficient bacteria are those that lack cell walls and live in a pleomorphic state. The genus Mycoplasma and L-form bacteria are both members of this group. The aim of this study was to search cellwall-deficient bacteria in periodontal biofilm and link their presence to periodontal disease. Eighty-nine individuals were recruited and divided into three groups: periodontally healthy individuals, individuals with chronic periodontitis, and those with aggressive periodontitis. The presence of cell-wall-deficient bacteria was detected in freshly collected biofilm by light microscopy, transmission electron microscopy (TEM) with and without electron microscopy in situ hybridization, atomic force microscopy and DNA stain (Hoechst). A new dichotomic index of classification for prevalence and morphologic variants was developed to classify cell-wall-deficient bacteria in periodontal biofilm. Cell-wall-deficient bacteria were found in periodontal biofilm and classified into protoplastic, everted, filament and intracellular forms, the last one mainly associated with aggressive periodontitis. We also assessed the prevalence of periodontopathic bacteria by means of polymerase chain-reaction (PCR) and found no clear, statistically significant, correlation among periodontal pathogens tested (except T. denticola) that allowed individuals with chronic periodontitis to be distinguished from those with aggressive periodontitis. Association between cell-walldeficient bacteria and periodontal condition was: periodontally healthy, 3.3% (1/30); individuals with chronic periodontitis, 30.6% (11/36); and those with aggressive periodontitis, 100% (23/23). Cell-walldeficient bacteria were detected in periodontal biofilm and linked to aggressive periodontitis.


2021 ◽  
Author(s):  
Tzan-Chain Lee ◽  
Kuan-Hung Lin ◽  
Chang-Chang Chen ◽  
Tin-Han Shih ◽  
Meng-Yuan Huang ◽  
...  

Abstract Background: Chlorophyllases (Chlases) are housekeeping proteins in plant cells. The dephytylating enzymes can catalyze chlorophyll (Chl) to form chlorophyllide, but the distribution of Chlases in plant cells is still an interesting debate. In this study, antibody of PmCLH2 was made and used by immunogold-labelling technique to detect the location of Chlase of Pachira macrocarpa (Pm) leaves at four developmental stages, including young, mature, yellowing, and senesced stages. Results: The transmission electron microscopy results show that Chlases were comprehensively found in portions of chloroplast, such as the inner membrane of the envelope, grana, and the thylakoid membrane of the chloroplast, cytosol, and vacuoles at young, mature, and yellowing stages of Pm leaves, but not in the cell wall, plasma membrane, mitochondria, and nucleus. Conclusions: PmChlases were mainly detected in vacuoles at the senescent stage, but a few were found in the chloroplasts. A pathway is proposed to explain the birth and death of Chl, Chlase, and chloroplasts in higher plants.


Author(s):  
T. Marieb ◽  
J. C. Bravman ◽  
P. Flinn ◽  
D. Gardner ◽  
M. Madden

Electromigration and stress voiding have been active areas of research in the microelectronics industry for many years. While accelerated testing of these phenomena has been performed for the last 25 years[1-2], only recently has the introduction of high voltage scanning electron microscopy (HVSEM) made possible in situ testing of realistic, passivated, full thickness samples at high resolution.With a combination of in situ HVSEM and post-testing transmission electron microscopy (TEM) , electromigration void nucleation sites in both normal polycrystalline and near-bamboo pure Al were investigated. The effect of the microstructure of the lines on the void motion was also studied.The HVSEM used was a slightly modified JEOL 1200 EX II scanning TEM with a backscatter electron detector placed above the sample[3]. To observe electromigration in situ the sample was heated and the line had current supplied to it to accelerate the voiding process. After testing lines were prepared for TEM by employing the plan-view wedge technique [6].


Author(s):  
J. T. Sizemore ◽  
D. G. Schlom ◽  
Z. J. Chen ◽  
J. N. Eckstein ◽  
I. Bozovic ◽  
...  

Investigators observe large critical currents for superconducting thin films deposited epitaxially on single crystal substrates. The orientation of these films is often characterized by specifying the unit cell axis that is perpendicular to the substrate. This omits specifying the orientation of the other unit cell axes and grain boundary angles between grains of the thin film. Misorientation between grains of YBa2Cu3O7−δ decreases the critical current, even in those films that are c axis oriented. We presume that these results are similar for bismuth based superconductors and report the epitaxial orientations and textures observed in such films.Thin films of nominally Bi2Sr2CaCu2Ox were deposited on MgO using molecular beam epitaxy (MBE). These films were in situ grown (during growth oxygen was incorporated and the films were not oxygen post-annealed) and shuttering was used to encourage c axis growth. Other papers report the details of the synthesis procedure. The films were characterized using x-ray diffraction (XRD) and transmission electron microscopy (TEM).


Author(s):  
M.A. O’Keefe ◽  
J. Taylor ◽  
D. Owen ◽  
B. Crowley ◽  
K.H. Westmacott ◽  
...  

Remote on-line electron microscopy is rapidly becoming more available as improvements continue to be developed in the software and hardware of interfaces and networks. Scanning electron microscopes have been driven remotely across both wide and local area networks. Initial implementations with transmission electron microscopes have targeted unique facilities like an advanced analytical electron microscope, a biological 3-D IVEM and a HVEM capable of in situ materials science applications. As implementations of on-line transmission electron microscopy become more widespread, it is essential that suitable standards be developed and followed. Two such standards have been proposed for a high-level protocol language for on-line access, and we have proposed a rational graphical user interface. The user interface we present here is based on experience gained with a full-function materials science application providing users of the National Center for Electron Microscopy with remote on-line access to a 1.5MeV Kratos EM-1500 in situ high-voltage transmission electron microscope via existing wide area networks. We have developed and implemented, and are continuing to refine, a set of tools, protocols, and interfaces to run the Kratos EM-1500 on-line for collaborative research. Computer tools for capturing and manipulating real-time video signals are integrated into a standardized user interface that may be used for remote access to any transmission electron microscope equipped with a suitable control computer.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


Author(s):  
G. A. Bertero ◽  
W.H. Hofmeister ◽  
N.D. Evans ◽  
J.E. Wittig ◽  
R.J. Bayuzick

Rapid solidification of Ni-Nb alloys promotes the formation of amorphous structure. Preliminary results indicate promising elastic properties and high fracture strength for the metallic glass. Knowledge of the thermal stability of the amorphus alloy and the changes in properties with temperature is therefore of prime importance. In this work rapidly solidified Ni-Nb alloys were analyzed with transmission electron microscopy (TEM) during in-situ heating experiments and after isothermal annealing of bulk samples. Differential thermal analysis (DTA), scanning electron microscopy (SEM) and x-ray diffraction (XRD) techniques were also used to characterize both the solidification and devitrification sequences.Samples of Ni-44 at.% Nb were electromagnetically levitated, melted, and rapidly solidified by splatquenching between two copper chill plates. The resulting samples were 100 to 200 μm thick discs of 2 to 3 cm diameter. TEM specimens were either ion-milled or alternatively electropolished in a methanol-10% sulphuric acid solution at 20 V and −40°C.


Author(s):  
T. Dewolf ◽  
D. Cooper ◽  
N. Bernier ◽  
V. Delaye ◽  
A. Grenier ◽  
...  

Abstract Forming and breaking a nanometer-sized conductive area are commonly accepted as the physical phenomenon involved in the switching mechanism of oxide resistive random access memories (OxRRAM). This study investigates a state-of-the-art OxRRAM device by in-situ transmission electron microscopy (TEM). Combining high spatial resolution obtained with a very small probe scanned over the area of interest of the sample and chemical analyses with electron energy loss spectroscopy, the local chemical state of the device can be compared before and after applying an electrical bias. This in-situ approach allows simultaneous TEM observation and memory cell operation. After the in-situ forming, a filamentary migration of titanium within the dielectric hafnium dioxide layer has been evidenced. This migration may be at the origin of the conductive path responsible for the low and high resistive states of the memory.


Sign in / Sign up

Export Citation Format

Share Document