scholarly journals Three-dimensional characterization of mandibular asymmetry in craniofacial microsomia

2020 ◽  
Vol 24 (12) ◽  
pp. 4363-4372
Author(s):  
Yun-Fang Chen ◽  
Frank Baan ◽  
Robin Bruggink ◽  
Ewald Bronkhorst ◽  
Yu-Fang Liao ◽  
...  

Abstract Objectives This study aimed to investigate the three-dimensional (3D) mandibular asymmetry in craniofacial microsomia (CFM) and its association with the Pruzansky–Kaban classification system. Materials and methods Cone-beam computed tomography images of 48 adult CFM cases were collected. The asymmetry of the mandibular body and ramus was analyzed with 3D landmarks. The mirrored mandibular model was registered on the original model, yielding a color-coded distance map and an average distance (i.e., asymmetry score) to quantify the overall mandibular asymmetry. Results The lengths of the mandibular body and ramus were significantly shorter on the affected than the contralateral side (p < 0.001). The ANB (p = 0.009), body and ramal lengths (both p < 0.001), and body and ramal length asymmetry (both p < 0.05) were significantly different between mild (types I/IIA) and severe (types IIB/III) cases. The mandibular asymmetry score correlated with mandibular body length asymmetry (r = 0.296, p = 0.046). CFM mandibles showed high variability in shape asymmetry. Conclusions CFM patients showed distinct body and ramal length asymmetries. In severe cases, mandibles were smaller, more retruded, and more asymmetric in length. The mandibular shape asymmetry was highly variable regardless of the Pruzansky–Kaban types, being a determinant in the extent of overall mandibular asymmetry. Clinical relevance The 3D morphologic analysis provides better insights into real mandibular asymmetry. Although the Pruzansky–Kaban classification was applied, high individual variability of the mandibular morphology still existed within the types. Therefore, individualized analyses and treatment plans for CFM patients are highly recommended.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jae-Young Kim ◽  
Michael D. Han ◽  
Kug Jin Jeon ◽  
Jong-Ki Huh ◽  
Kwang-Ho Park

Abstract Background The purpose of this study was to investigate the differences in configuration and dimensions of the anterior loop of the inferior alveolar nerve (ALIAN) in patients with and without mandibular asymmetry. Method Preoperative computed tomography images of patients who had undergone orthognathic surgery from January 2016 to December 2018 at a single institution were analyzed. Subjects were classified into two groups as “Asymmetry group” and “Symmetry group”. The distance from the most anterior and most inferior points of the ALIAN (IANant and IANinf) to the vertical and horizontal reference planes were measured (dAnt and dInf). The distance from IANant and IANinf to the mental foramen were also calculated (dAnt_MF and dInf_MF). The length of the mandibular body and symphysis area were measured. All measurements were analyzed using 3D analysis software. Results There were 57 total eligible subjects. In the Asymmetry group, dAnt and dAnt_MF on the non-deviated side were significantly longer than the deviated side (p < 0.001). dInf_MF on the non-deviated side was also significantly longer than the deviated side (p = 0.001). Mandibular body length was significantly longer on the non-deviated side (p < 0.001). There was no significant difference in length in the symphysis area (p = 0.623). In the Symmetry group, there was no difference between the left and right sides for all variables. Conclusion In asymmetric patients, there is a difference tendency in the ALIAN between the deviated and non-deviated sides. In patients with mandibular asymmetry, this should be considered during surgery in the anterior mandible.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Angad Malhotra ◽  
Matthias Walle ◽  
Graeme R. Paul ◽  
Gisela A. Kuhn ◽  
Ralph Müller

AbstractMethods to repair bone defects arising from trauma, resection, or disease, continue to be sought after. Cyclic mechanical loading is well established to influence bone (re)modelling activity, in which bone formation and resorption are correlated to micro-scale strain. Based on this, the application of mechanical stimulation across a bone defect could improve healing. However, if ignoring the mechanical integrity of defected bone, loading regimes have a high potential to either cause damage or be ineffective. This study explores real-time finite element (rtFE) methods that use three-dimensional structural analyses from micro-computed tomography images to estimate effective peak cyclic loads in a subject-specific and time-dependent manner. It demonstrates the concept in a cyclically loaded mouse caudal vertebral bone defect model. Using rtFE analysis combined with adaptive mechanical loading, mouse bone healing was significantly improved over non-loaded controls, with no incidence of vertebral fractures. Such rtFE-driven adaptive loading regimes demonstrated here could be relevant to clinical bone defect healing scenarios, where mechanical loading can become patient-specific and more efficacious. This is achieved by accounting for initial bone defect conditions and spatio-temporal healing, both being factors that are always unique to the patient.


2020 ◽  
Vol 1 (1) ◽  
pp. 62-70
Author(s):  
Amir H Sadeghi ◽  
Wouter Bakhuis ◽  
Frank Van Schaagen ◽  
Frans B S Oei ◽  
Jos A Bekkers ◽  
...  

Abstract Aims Increased complexity in cardiac surgery over the last decades necessitates more precise preoperative planning to minimize operating time, to limit the risk of complications during surgery and to aim for the best possible patient outcome. Novel, more realistic, and more immersive techniques, such as three-dimensional (3D) virtual reality (VR) could potentially contribute to the preoperative planning phase. This study shows our initial experience on the implementation of immersive VR technology as a complementary research-based imaging tool for preoperative planning in cardiothoracic surgery. In addition, essentials to set up and implement a VR platform are described. Methods Six patients who underwent cardiac surgery at the Erasmus Medical Center, Rotterdam, The Netherlands, between March 2020 and August 2020, were included, based on request by the surgeon and availability of computed tomography images. After 3D VR rendering and 3D segmentation of specific structures, the reconstruction was analysed via a head mount display. All participating surgeons (n = 5) filled out a questionnaire to evaluate the use of VR as preoperative planning tool for surgery. Conclusion Our study demonstrates that immersive 3D VR visualization of anatomy might be beneficial as a supplementary preoperative planning tool for cardiothoracic surgery, and further research on this topic may be considered to implement this innovative tool in daily clinical practice. Lay summary Over the past decades, surgery on the heart and vessels is becoming more and more complex, necessitating more precise and accurate preoperative planning. Nowadays, operative planning is feasible on flat, two-dimensional computer screens, however, requiring a lot of spatial and three-dimensional (3D) thinking of the surgeon. Since immersive 3D virtual reality (VR) is an upcoming imaging technique with promising results in other fields of surgery, we aimed in this study to explore the additional value of this technique in heart surgery. Our surgeons planned six different heart operations by visualizing computed tomography scans with a dedicated VR headset, enabling them to visualize the patient’s anatomy in an immersive and 3D environment. The outcomes of this preliminary study are positive, with a much more reality-like simulation for the surgeon. In such, VR could potentially be beneficial as a preoperative planning tool for complex heart surgery.


Author(s):  
Bardiya Akhbari ◽  
Kalpit N. Shah ◽  
Amy M. Morton ◽  
Janine Molino ◽  
Douglas C. Moore ◽  
...  

Abstract Purpose There is a lack of quantitative research that describes the alignment and, more importantly, the effects of malalignment on total wrist arthroplasty (TWA). The main goal of this pilot study was to assess the alignment of TWA components in radiographic images and compare them with measures computed by three-dimensional analysis. Using these measures, we then determined if malalignment is associated with range of motion (ROM) or clinical outcomes (PRWHE, PROMIS, QuickDash, and grip strength). Methods Six osteoarthritic patients with a single type of TWA were recruited. Radiographic images, computed tomography images, and clinical outcomes of the wrists were recorded. Using posteroanterior and lateral radiographs, alignment measurements were defined for the radial and carpal components. Radiographic measurements were validated with models reconstructed from computed tomography images using Bland–Altman analysis. Biplanar videoradiography (<1mm and <1 degree accuracy) was used to capture and compute ROM of the TWA components. Linear regression assessed the associations between alignment and outcomes. Results Radiographic measures had a 95% limit-of-agreement (mean difference ±  1.96 × SD) of 3 degrees and 3mm with three-dimensional values, except for the measures of the carpal component in the lateral view. In our small cohort, wrist flexion–extension and radial–ulnar deviation were correlated with volar–dorsal tilt and volar–dorsal offset of the radial component and demonstrated a ROM increase of 3.7 and 1.6 degrees per degree increase in volar tilt, and 10.8 and 4.2 degrees per every millimeter increase in volar offset. The carpal component's higher volar tilt was also associated with improvements in patient-reported pain. Conclusions We determined metrics describing the alignment of TWA, and found the volar tilt and volar offset of the radial component could potentially influence the replaced wrist's ROM. Clinical Relevance TWA component alignment can be measured reliably in radiographs, and may be associated with clinical outcomes. Future studies must evaluate its role in a larger cohort.


Author(s):  
Daphne Schönegg ◽  
Raphael Ferrari ◽  
Julian Ebner ◽  
Michael Blumer ◽  
Martin Lanzer ◽  
...  

Abstract Purpose The close topographic relationship between vascular and osseous structures in the condylar and subcondylar region and marked variability in the arterial course has been revealed by both imaging and cadaveric studies. This study aimed to verify the previously published information in a large sample and to determine a safe surgical region. Methods We analyzed the three-dimensional time-of-flight magnetic resonance angiography images of 300 individuals. Results The mean distance between the middle meningeal artery and the apex of the condyle or the most medial point of the condyle was 18.8 mm (range: 11.2–25.9 mm) or 14.5 mm (range: 8.8–22.9 mm) respectively. The course of the maxillary artery relative to the lateral pterygoid muscle was medial in 45.7% of cases and lateral in 54.3%. An asymmetric course was evident in 66 patients (22%). The mean distance between the maxillary artery and condylar process at the deepest point of the mandibular notch was 6.2 mm in sides exhibiting a medial course (range: 3.7–9.8 mm) and 6.6 mm in sides exhibiting a lateral course (range: 3.9–10.4 mm). The distances were significantly influenced by age, gender, and the course of the maxillary artery. Conclusion Our study emphasizes the marked inter- and intra-individual variability of the maxillary and middle meningeal arterial courses. We confirmed the proximity of the arteries to the condylar process. Extensive surgical experience and thorough preparation for each individual case are essential to prevent iatrogenic vascular injury.


Author(s):  
Rangarajan Purushothaman ◽  
Shivang Desai ◽  
Sateesh Jayappa ◽  
Arabinda K. Choudhary ◽  
Raghu H. Ramakrishnaiah

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 436 ◽  
Author(s):  
Hilary Mary Clayton ◽  
Sarah Jane Hobbs

The piaffe is an artificial, diagonally coordinated movement performed in the highest levels of dressage competition. The ground reaction forces (GRFs) of horses performing the piaffe do not appear to have been reported. Therefore, the objective of this study was to describe three-dimensional GRFs in ridden dressage horses performing the piaffe. In-ground force plates were used to capture fore and hindlimb GRF data from seven well-trained dressage horses. Peak vertical GRF was significantly higher in forelimbs than in the hindlimbs (7.39 ± 0.99 N/kg vs. 6.41 ± 0.64 N/kg; p < 0.001) with vertical impulse showing a trend toward higher forelimb values. Peak longitudinal forces were small with no difference in the magnitude of braking or propulsive forces between fore and hindlimbs. Peak transverse forces were similar in magnitude to longitudinal forces and were mostly directed medially in the hindlimbs. Both the intra- and inter-individual variability of longitudinal and transverse GRFs were high (coefficient of variation 25–68%). Compared with the other diagonal gaits of dressage horses, the vertical GRF somewhat shifted toward the hindlimbs. The high step-to-step variability of the horizontal GRF components is thought to reflect the challenge of balancing on one diagonal pair of limbs with no forward momentum.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4284
Author(s):  
Lvtao Zhu ◽  
Mahfuz Bin Rahman ◽  
Zhenxing Wang

Three-dimensional integrated woven spacer sandwich composites have been widely used as industrial textiles for many applications due to their superior physical and mechanical properties. In this research, 3D integrated woven spacer sandwich composites of five different specifications were produced, and the mechanical properties and performance were investigated under different load conditions. XR-CT (X-ray computed tomography) images were employed to visualize the microstructural details and analyze the fracture morphologies of fractured specimens under different load conditions. In addition, the effects of warp and weft direction, face sheet thickness, and core pile height on the mechanical properties and performance of the composite materials were analyzed. This investigation can provide significant guidance to help determine the structure of composite materials and design new products according to the required mechanical properties.


1994 ◽  
Vol 14 (5) ◽  
pp. 749-762 ◽  
Author(s):  
Jean-François Mangin ◽  
Vincent Frouin ◽  
Isabelle Bloch ◽  
Bernard Bendriem ◽  
Jaime Lopez-Krahe

We propose a fully nonsupervised methodology dedicated to the fast registration of positron emission tomography (PET) and magnetic resonance images of the brain. First, discrete representations of the surfaces of interest (head or brain surface) are automatically extracted from both images. Then, a shape-independent surface-matching algorithm gives a rigid body transformation, which allows the transfer of information between both modalities. A three-dimensional (3D) extension of the chamfer-matching principle makes up the core of this surface-matching algorithm. The optimal transformation is inferred from the minimization of a quadratic generalized distance between discrete surfaces, taking into account between-modality differences in the localization of the segmented surfaces. The minimization process is efficiently performed via the precomputation of a 3D distance map. Validation studies using a dedicated brain-shaped phantom have shown that the maximum registration error was of the order of the PET pixel size (2 mm) for the wide variety of tested configurations. The software is routinely used today in a clinical context by the physicians of the Service Hospitalier Frédéric Joliot (>150 registrations performed). The entire registration process requires ∼5 min on a conventional workstation.


2014 ◽  
Vol 41 (7) ◽  
pp. 071707 ◽  
Author(s):  
Kevin I. Kauweloa ◽  
Alonso N. Gutierrez ◽  
Angelo Bergamo ◽  
Sotirios Stathakis ◽  
Nikos Papanikolaou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document