Analyzing of expression of novel polypeptide complexes consisting of Shiga toxin B subunit and Adherence Fimbriae of Escherichia coli based on in silico modeling

2012 ◽  
Vol 18 (9) ◽  
pp. 4131-4139
Author(s):  
Zeinab Noroozian ◽  
Mana Oloomi ◽  
Saeid Bouzari
Toxins ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 64
Author(s):  
Beth A. McNichol ◽  
Rebecca A. Bova ◽  
Kieron Torres ◽  
Lan N. Preston ◽  
Angela R. Melton-Celsa

Shiga toxin (Stx)-producing Escherichia coli (STEC) strain B2F1 produces Stx type 2d, a toxin that becomes more toxic towards Vero cells in the presence of intestinal mucus. STEC that make Stx2d are more pathogenic to streptomycin (Str)-treated mice than most STEC that produce Stx2a or Stx2c. However, purified Stx2d is only 2- or 7-fold more toxic by the intraperitoneal route than Stx2a or Stx2c, respectively. We hypothesized, therefore, that the toxicity differences among Stx2a, Stx2c, and Stx2d occur at the level of delivery from the intestine. To evaluate that hypothesis, we altered the toxin type produced by stx2d+ mouse virulent O91:H21 clinical isolate B2F1 to Stx2a or Stx2c. Because B2F1 encodes two copies of stx2d, we did these studies in a derivative of B2F1 in which stx2d1 was deleted. Although the strains were equivalently virulent to the Str-treated mice at the 1010 dose, the B2F1 strain that produced Stx2a was attenuated relative to the ones that produced Stx2d or Stx2c when administered at 103 CFU/mouse. We next compared the oral toxicities of purified Stx2a, Stx2c, and Stx2d. We found that purified Stx2d is more toxic than Stx2a or Stx2c upon oral administration at 4 µg/mouse. Taken together, these studies suggest that Stx2 toxins are most potent when delivered directly from the bacterium. Furthermore, because Stx2d and Stx2c have the identical amino acid composition in the toxin B subunit, our results indicate that the virulence difference between Stx2a and Stx2d and Stx2c resides in the B or binding subunit of the toxins.


Author(s):  
Arthur Donohue-Rolfe ◽  
David W. K. Acheson ◽  
Gerald T. Keusch ◽  
Marcia B. Goldberg ◽  
Stephanie A. Boyko ◽  
...  

2013 ◽  
Vol 24 (15) ◽  
pp. 2311-2318 ◽  
Author(s):  
Somshuvra Mukhopadhyay ◽  
Brendan Redler ◽  
Adam D. Linstedt

Shiga toxicosis is caused by retrograde trafficking of one of three types of Shiga toxin (STx), STx, STx1, or STx2. Trafficking depends on the toxin B subunits, which for STx and STx1 are identical and bind GPP130, a manganese (Mn)-sensitive intracellular trafficking receptor. Elevated Mn down-regulates GPP130, rendering STx/STx1 harmless. Its effectiveness against STx2, however, which is a serious concern in the developed world, is not known. Here we show that Mn-induced GPP130 down-regulation fails to block STx2 trafficking. To shed light on this result, we tested the purified B subunit of STx2 for binding to GPP130 and found that it failed to interact. We then mapped residues at the interface of the GPP130-STx/STx1 complex. In GPP130, binding mapped to a seven-residue stretch in its lumenal stem domain next to the transmembrane domain. This stretch was required for STx/STx1 transport. In STx/STx1, binding mapped to a histidine–asparagine pair on a surface-exposed loop of the toxin B subunit. Significantly, these residues are not conserved in STx2, explaining the lack of effectiveness of Mn against STx2. Together our results imply that STx2 uses an evolutionarily distinct trafficking mechanism and that Mn as a potential therapy should be focused on STx/STx1 outbreaks, which account for the vast majority of cases worldwide.


2000 ◽  
Vol 68 (8) ◽  
pp. 4492-4497 ◽  
Author(s):  
Dani Cohen ◽  
Nadav Orr ◽  
Moti Haim ◽  
Shai Ashkenazi ◽  
Guy Robin ◽  
...  

ABSTRACT Enterotoxigenic Escherichia coli (ETEC) is one of the leading causes of diarrhea among Israeli soldiers serving in field units. Two double-blind placebo-controlled, randomized trials were performed among 155 healthy volunteers to evaluate the safety and immunogenicity of different lots of the oral, killed ETEC vaccine consisting of two doses of whole cells plus recombinantly produced cholera toxin B subunit (rCTB). The two doses of vaccine lot E005 and the first dose of vaccine lot E003 were well tolerated by the volunteers. However, 5 (17%) vaccinees reported an episode of vomiting a few hours after the second dose of lot E003; none of the placebo recipients reported similar symptoms. Both lots of vaccine stimulated a rate of significant antibody-secreting cell (ASC) response to CTB and to colonization factor antigen I (CFA/I) after one or two doses, ranging from 85 to 100% and from 81 to 100%, respectively. The rate of ASC response to CS2, CS4, and CS5 was slightly lower than the rate of ASC response induced to CTB, CFA/I, and CS1. The second vaccine dose enhanced the response to CTB but did not increase the frequencies or magnitude of ASC responses to the other antigens. The two lots of the ETEC vaccine induced similar rates of serum antibody responses to CTB and CFA/I which were less frequent than the ASC responses to the same antigens. Based on these safety and immunogenicity data, an efficacy study of the ETEC vaccine is under way in the Israel Defense Force.


2008 ◽  
Vol 11 (13) ◽  
pp. 1718-1722
Author(s):  
T. Haryanti ◽  
N.S. Mariana ◽  
S.Y. Latifah ◽  
K. Yusoff ◽  
A.R. Raha

2019 ◽  
Vol 7 (11) ◽  
pp. 488 ◽  
Author(s):  
Clifton K. Fagerquist ◽  
William J. Zaragoza ◽  
Michelle Q. Carter

Shiga-toxin-producing Escherichia coli (STEC) are a burden on agriculture and a threat to public health. Rapid methods are needed to identify STEC strains and characterize the Shiga toxin (Stx) they produce. We analyzed three STEC strains for Stx expression, using antibiotic induction, matrix-assisted laser desorption/ionization time-of-flight-time-of-flight (MALDI-TOF-TOF) mass spectrometry, and top-down proteomic analysis. E. coli O157:H- strain 493/89 is a clinical isolate linked to an outbreak of hemolytic uremic syndrome (HUS) in Germany in the late 1980s. E. coli O145:H28 strains RM12367-C1 and RM14496-C1 were isolated from an agricultural region in California. The stx operon of the two environmental strains were determined by whole genome sequencing (WGS). STEC strain 493/89 expressed Shiga toxin 2a (Stx2a) as identified by tandem mass spectrometry (MS/MS) of its B-subunit that allowed identification of the type and subtype of the toxin. RM12367-C1 also expressed Stx2a as identified by its B-subunit. RM14496-C1 expressed Shiga toxin 1a (Stx1a) as identified from its B-subunit. The B-subunits of Stx1 and Stx2 both have an intramolecular disulfide bond. MS/MS was obtained on both the disulfide-bond-intact and disulfide-bond-reduced B-subunit, with the latter being used for top-down proteomic identification. Top-down proteomic analysis was consistent with WGS.


Sign in / Sign up

Export Citation Format

Share Document