Mathematical Model and Experimental Validation of Free Surface Size Segregation for Polydisperse Granular Materials

2002 ◽  
Vol 4 (2) ◽  
pp. 45-56 ◽  
Author(s):  
Shiva P. Pudasaini ◽  
Jan Mohring
1993 ◽  
Vol 07 (09n10) ◽  
pp. 1865-1872 ◽  
Author(s):  
Toshiya OHTSUKI ◽  
Yoshikazu TAKEMOTO ◽  
Tatsuo HATA ◽  
Shigeki KAWAI ◽  
Akihisa HAYASHI

The Molecular Dynamics technique is used to investigate size segregation by shaking in cohesionless granular materials. Temporal evolution of the height h of the tagged particle with different size and mass is measured for various values of the particle radius and specific gravity. It becomes evident that h approaches the steady state value h∞ independent of initial positions. There exists a threshold of the specific gravity of the particle. Below the threshold, h∞ is an increasing function of the particle size, whereas above it, h∞ decreases with increasing the particle radius. The relaxation time τ towards the steady state is calculated and its dependence on the particle radius and specific gravity is clarified. The pressure gradient of pure systems is also measured and turned out to be almost constant. This suggests that the buoyancy force due to the pressure gradient is not responsible to h∞.


2016 ◽  
Vol 63 (2) ◽  
pp. 263-275 ◽  
Author(s):  
Joseph William Thompson ◽  
William O’Connor

Abstract Wave-Based Control has been previously applied successfully to simple under-actuated flexible mechanical systems. Spacecraft and rockets with structural flexibility and sloshing are examples of such systems but have added difficulties due to non-uniform structure, external disturbing forces and non-ideal actuators and sensors. The aim of this paper is to extend the application of WBC to spacecraft systems, to compare the performance of WBC to other popular controllers and to carry out experimental validation of the designed control laws. A mathematical model is developed for an upper stage accelerating rocket moving in a single plane. Fuel sloshing is represented by an equivalent mechanical pendulum model. A wave-based controller is designed for the upper stage AVUM of the European launcher Vega. In numerical simulations the controller successfully suppresses the sloshing motion. A major advantage of the strategy is that no measurement of the pendulum states (sloshing motion) is required.


2014 ◽  
Vol 986-987 ◽  
pp. 810-813
Author(s):  
Ying Li Shao

The exhaust noise, which falls into low-frequency noise, is the dominant noise source of a diesel engines and tractors. The traditional exhaust silencers, which are normally constructed by combination of expansion chamber, and perforated pipe or perforated board, are with high exhaust resistance, but poor noise reduction especially for the low-frequency band noise. For this reason, a new theory of exhaust muffler of diesel engine based on counter-phase counteracts has been proposed. The mathematical model and the corresponding experimental validation for the new exhaust muffler based on this theory were performed.


1990 ◽  
Vol 34 (04) ◽  
pp. 302-310
Author(s):  
Salwa M. Rashad ◽  
Theodore Green

A linearized cavity-flow theory is used to develop a mathematical model to study the steady characteristics of a flexible hydrofoil near a free surface. The Galerkin method is employed to account for the mutual interaction between the fluid and structure forces. Cheng and Rott's method [1]2 is used to derive general expressions for the deformation characteristics in steady flow of an arbitrarily shaped hydrofoil, with a clamped trailing edge and free leading edge. From the analysis it is possible to determine the lift and drag coefficients, cavity length, and the foil steady deformation for any given specific foil shape, cavitation number, angle of attack, flow depth/chord ratio and rigidity. Sample numerical results are given, and the effects of flexibility and the proximity of the free surface are discussed. Chordwise flexibility tends to increase drag and decrease lift coefficients. This effect is more serious near the free surface. A slight increase of the thickness near the leading edge diminishes the flexibility effects.


Sign in / Sign up

Export Citation Format

Share Document