scholarly journals Hydro-geomechanical characterisation of a coastal urban aquifer using multiscalar time and frequency domain groundwater-level responses

Author(s):  
Ashley M. Patton ◽  
Gabriel C. Rau ◽  
Peter J. Cleall ◽  
Mark O. Cuthbert

AbstractHydraulic properties of coastal, urban aquifers vary spatially and temporally with the complex dynamics of their hydrogeology and the heterogeneity of ocean-influenced hydraulic processes. Traditional aquifer characterisation methods are expensive, time-consuming and represent a snapshot in time. Tidal subsurface analysis (TSA) can passively characterise subsurface processes and establish hydro-geomechanical properties from groundwater head time-series but is typically applied to individual wells inland. Presented here, TSA is applied to a network of 116 groundwater boreholes to spatially characterise confinement and specific storage across a coastal aquifer at city-scale in Cardiff (UK) using a 23-year high-frequency time-series dataset. The dataset comprises Earth, atmospheric and oceanic signals, with the analysis conducted in the time domain, by calculating barometric response functions (BRFs), and in the frequency domain (TSA). By examining the damping and attenuation of groundwater response to ocean tides (OT) with distance from the coast/rivers, a multi-borehole comparison of TSA with BRF shows this combination of analyses facilitates disentangling the influence of tidal signals and estimation of spatially distributed aquifer properties for non-OT-influenced boreholes. The time-series analysed covers a period pre- and post-impoundment of Cardiff’s rivers by a barrage, revealing the consequent reduction in subsurface OT signal propagation post-construction. The results indicate that a much higher degree of confined conditions exist across the aquifer than previously thought (specific storage = 2.3 × 10−6 to 7.9 × 10−5 m−1), with implications for understanding aquifer recharge, and informing the best strategies for utilising groundwater and shallow geothermal resources.

2019 ◽  
pp. 17-23
Author(s):  
O. Kostyria ◽  
V. Storozhenko ◽  
V. Naumenko

Multipath propagation of radio waves negatively affects to the performance of telecommunications and radio navigation systems [1, 3]. When performing time and frequency synchronization tasks of spatially separated standards, the multi­path signal propagation aggravates the probabi­lity of a correct synchronization and introduces an error. The presence of a multipath signal reduces the signal-to-noise ratio in the received signal, which in turn causes an increase in the synchronization error. The mathematical models of multipath interference suppression in the time and in the frequency domain are presented in the article. Compared to time processing, processing in the frequency domain reduces computational costs. The operation of suppression in the time domain has been verified experimentally.


2020 ◽  
Author(s):  
Ashley M Patton ◽  
Gabriel C Rau ◽  
Corinna Abesser ◽  
David R James ◽  
Peter J Cleall ◽  
...  

<p>Urban environments often have highly variable and evolving hydrogeology. Coastal cities present even greater challenges to hydraulic and thermal conceptualisation and parameter estimation due to their complex dynamics and the heterogeneity of ocean-influenced hydraulic processes. Traditional methods of investigation (e.g. pump tests, invasive sampling) are time consuming, expensive, represent a snapshot in time and are difficult to conduct in built-up areas, yet properties derived from them are crucial for constructing models and forecasting urban groundwater evolution.</p><p>Here we present a novel approach to use passive sampling of groundwater head data to understand subsurface processes and derive hydraulic and geotechnical properties in an urban-coastal setting. This is illustrated using twenty years of high frequency (hourly) time-series data from an existing groundwater monitoring network comprising 234 boreholes distributed across Cardiff, the capital city of Wales, UK. We have applied Tidal Subsurface Analysis (TSA) to Earth, Atmospheric and Oceanic signals in groundwater time-series in the frequency domain, and also generated Barometric Response Functions in the time domain. By also observing the damping and attenuation of the response to ocean tides with distance from the coast and tidal rivers, this combination of analyses has enabled us to disentangle the influence of the different tidal components and estimate spatially distributed aquifer processes and parameters.</p><p>The data cover a period pre and post construction of a barrage across the coastline, impounding the city’s rivers. We were therefore able to observe a huge decrease in the subsurface ocean tide signal propagation following this human intervention, through the coastal and tidal river boundaries. These changes reveal variations in hydraulic responses and values of hydraulic diffusivity between different lithologies, notably with made-ground deposits being much less sensitive to ocean tides than the underlying sand and gravel aquifer. By being able to map the spatial variations in hydraulic response and barometric efficiency for the first time (and therefore formation compressibility and extent of aquifer confinement) we have been able to refine interpretations (and in some cases overcome misconceptions) derived from previous inferences made solely from borehole logs. We anticipate that linking the improved hydraulic characterisation, enabled by the new methodology, will also help better characterisation of the subsurface thermal regime, and management of shallow geothermal energy resources in coastal urban aquifers.</p>


1968 ◽  
Vol 70 (1) ◽  
pp. 25 ◽  
Author(s):  
O. Brandes ◽  
J. Farley ◽  
M. Hinich ◽  
U. Zackrisson

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Jianmin Zhou ◽  
Sen Gao ◽  
Jiahui Li ◽  
Wenhao Xiong

To extract the time-series characteristics of the original bearing signals and predict the remaining useful life (RUL) more effectively, a parallel multichannel recurrent convolutional neural network (PMCRCNN) is proposed for the prediction of RUL. Firstly, the time domain, frequency domain, and time-frequency domain features are extracted from the original signal. Then, the PMCRCNN model is constructed. The front of the model is the parallel multichannel convolution unit to learn and integrate the global and local features from the time-series data. The back of the model is the recurrent convolution layer to model the temporal dependence relationship under different degradation features. Normalized life values are used as labels to train the prediction model. Finally, the RUL was predicted by the trained neural network. The proposed method is verified by full life tests of bearing. The comparison with the existing prognostics approaches of convolutional neural network (CNN) and the recurrent convolutional neural network (RCNN) models proves that the proposed method (PMCRCNN) is effective and superior in improving the accuracy of RUL prediction.


2018 ◽  
Vol 12 (7-8) ◽  
pp. 76-83
Author(s):  
E. V. KARSHAKOV ◽  
J. MOILANEN

Тhe advantage of combine processing of frequency domain and time domain data provided by the EQUATOR system is discussed. The heliborne complex has a towed transmitter, and, raised above it on the same cable a towed receiver. The excitation signal contains both pulsed and harmonic components. In fact, there are two independent transmitters operate in the system: one of them is a normal pulsed domain transmitter, with a half-sinusoidal pulse and a small "cut" on the falling edge, and the other one is a classical frequency domain transmitter at several specially selected frequencies. The received signal is first processed to a direct Fourier transform with high Q-factor detection at all significant frequencies. After that, in the spectral region, operations of converting the spectra of two sounding signals to a single spectrum of an ideal transmitter are performed. Than we do an inverse Fourier transform and return to the time domain. The detection of spectral components is done at a frequency band of several Hz, the receiver has the ability to perfectly suppress all sorts of extra-band noise. The detection bandwidth is several dozen times less the frequency interval between the harmonics, it turns out thatto achieve the same measurement quality of ground response without using out-of-band suppression you need several dozen times higher moment of airborne transmitting system. The data obtained from the model of a homogeneous half-space, a two-layered model, and a model of a horizontally layered medium is considered. A time-domain data makes it easier to detect a conductor in a relative insulator at greater depths. The data in the frequency domain gives more detailed information about subsurface. These conclusions are illustrated by the example of processing the survey data of the Republic of Rwanda in 2017. The simultaneous inversion of data in frequency domain and time domain can significantly improve the quality of interpretation.


2021 ◽  
Vol 9 (7) ◽  
pp. 781
Author(s):  
Shi He ◽  
Aijun Wang

The numerical procedures for dynamic analysis of mooring lines in the time domain and frequency domain were developed in this work. The lumped mass method was used to model the mooring lines. In the time domain dynamic analysis, the modified Euler method was used to solve the motion equation of mooring lines. The dynamic analyses of mooring lines under horizontal, vertical, and combined harmonic excitations were carried out. The cases of single-component and multicomponent mooring lines under these excitations were studied, respectively. The case considering the seabed contact was also included. The program was validated by comparing with the results from commercial software, Orcaflex. For the frequency domain dynamic analysis, an improved frame invariant stochastic linearization method was applied to the nonlinear hydrodynamic drag term. The cases of single-component and multicomponent mooring lines were studied. The comparison of results shows that frequency domain results agree well with nonlinear time domain results.


2002 ◽  
Vol 124 (4) ◽  
pp. 827-834 ◽  
Author(s):  
D. O. Baun ◽  
E. H. Maslen ◽  
C. R. Knospe ◽  
R. D. Flack

Inherent in the construction of many experimental apparatus designed to measure the hydro/aerodynamic forces of rotating machinery are features that contribute undesirable parasitic forces to the measured or test forces. Typically, these parasitic forces are due to seals, drive couplings, and hydraulic and/or inertial unbalance. To obtain accurate and sensitive measurement of the hydro/aerodynamic forces in these situations, it is necessary to subtract the parasitic forces from the test forces. In general, both the test forces and the parasitic forces will be dependent on the system operating conditions including the specific motion of the rotor. Therefore, to properly remove the parasitic forces the vibration orbits and operating conditions must be the same in tests for determining the hydro/aerodynamic forces and tests for determining the parasitic forces. This, in turn, necessitates a means by which the test rotor’s motion can be accurately controlled to an arbitrarily defined trajectory. Here in, an interrupt-driven multiple harmonic open-loop controller was developed and implemented on a laboratory centrifugal pump rotor supported in magnetic bearings (active load cells) for this purpose. This allowed the simultaneous control of subharmonic, synchronous, and superharmonic rotor vibration frequencies with each frequency independently forced to some user defined orbital path. The open-loop controller was implemented on a standard PC using commercially available analog input and output cards. All analog input and output functions, transformation of the position signals from the time domain to the frequency domain, and transformation of the open-loop control signals from the frequency domain to the time domain were performed in an interrupt service routine. Rotor vibration was attenuated to the noise floor, vibration amplitude ≈0.2 μm, or forced to a user specified orbital trajectory. Between the whirl frequencies of 14 and 2 times running speed, the orbit semi-major and semi-minor axis magnitudes were controlled to within 0.5% of the requested axis magnitudes. The ellipse angles and amplitude phase angles of the imposed orbits were within 0.3 deg and 1.0 deg, respectively, of their requested counterparts.


1992 ◽  
Vol 114 (1) ◽  
pp. 45-51 ◽  
Author(s):  
G. J. Brereton ◽  
A. Kodal

A new technique is presented for decomposing unsteady turbulent flow variables into their organized unsteady and turbulent components, which appears to offer some significant advantages over existing ones. The technique uses power-spectral estimates of data to deduce the optimal frequency-domain filter for determining the organized and turbulent components of a time series of data. When contrasted with the phase-averaging technique, this method can be thought of as replacing the assumption that the organized motion is identically reproduced in successive cycles of known periodicity by a more general condition: the cross-correlation of the organized and turbulent components is minimized for a time series of measurement data, given the expected shape of the turbulence power spectrum. The method is significantly more general than the phase average in its applicability and makes more efficient use of available data. Performance evaluations for time series of unsteady turbulent velocity measurements attest to the accuracy of the technique and illustrate the improved performance of this method over the phase-averaging technique when cycle-to-cycle variations in organized motion are present.


Author(s):  
Mansour Tabatabaie ◽  
Thomas Ballard

Dynamic soil-structure interaction (SSI) analysis of nuclear power plants is often performed in frequency domain using programs such as SASSI [1]. This enables the analyst to properly a) address the effects of wave radiation in an unbounded soil media, b) incorporate strain-compatible soil shear modulus and damping properties and c) specify input motion in the free field using the de-convolution method and/or spatially variable ground motions. For structures that exhibit nonlinearities such as potential base sliding and/or uplift, the frequency-domain procedure is not applicable as it is limited to linear systems. For such problems, it is necessary to solve the problem in the time domain using the direct integration method in programs such as ADINA [2]. The authors recently introduced a sub-structuring technique called distributed parameter foundation impedance (DPFI) model that allows the structure to be partitioned from the total SSI system and analyzed in the time domain while the foundation soil is modeled using the frequency-domain procedure [3]. This procedure has been validated for linear systems. In this paper we have expanded the DPFI model to incorporate nonlinearities at the soil/structure interface by introducing nonlinear shear and normal springs arranged in series between the DPFI and structure model. This combination of the linear far-field impedance (DPFI) plus nonlinear near-field soil springs allows the foundation sliding and/or uplift behavior be analyzed in time domain while maintaining the frequency-dependent stiffness and radiation damping nature of the far-field foundation impedance. To check the accuracy of this procedure, a typical NPP foundation mat supported at the surface of a layered soil system and subjected to harmonic forced vibration was first analyzed in the frequency domain using SASSI to calculate the target linear response and derive a linear, far-field DPFI model. The target linear solution was then used to validate two linear time-domain ADINA models: Model 1 consisting of the mat foundation+DPFI derived from the linear SASSI model and Model 2 consisting of the total SSI system (mat foundation plus a soil block). After linear alignment, the nonlinear springs were added to both ADINA models and re-analyzed in time domain. Model 2 provided the target nonlinear solution while Model 1 provided the results using the DPFI+nonlinear springs. By increasing the amplitude of the vibration load, different levels of foundation sliding were simulated. Good agreement between the results of two models in terms of the displacement response of the mat and cyclic force-displacement behavior of the springs validates the accuracy of the procedure presented herein.


Sign in / Sign up

Export Citation Format

Share Document