Coupled effects of chemical environments and freeze–thaw cycles on damage characteristics of red sandstone

2016 ◽  
Vol 76 (4) ◽  
pp. 1481-1490 ◽  
Author(s):  
Feng Gao ◽  
Qiaoli Wang ◽  
Hongwei Deng ◽  
Jian Zhang ◽  
Weigang Tian ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Longxiao Chen ◽  
Kesheng Li ◽  
Guilei Song ◽  
Deng Zhang ◽  
Chuanxiao Liu

AbstractRock deterioration under freeze–thaw cycles is a concern for in-service tunnel in cold regions. Previous studies focused on the change of rock mechanical properties under unidirectional stress, but the natural rock mass is under three dimensional stresses. This paper investigates influences of the number of freeze–thaw cycle on sandstone under low confining pressure. Twelve sandstone samples were tested subjected to triaxial compression. Additionally, the damage characteristics of sandstone internal microstructure were obtained by using acoustic emission (AE) and mercury intrusion porosimetry. Results indicated that the mechanical properties of sandstone were significantly reduced by freeze–thaw effect. Sandstone’ peak strength and elastic modulus were 7.28–37.96% and 6.38–40.87% less than for the control, respectively. The proportion of super-large pore and large pore in sandstone increased by 19.53–81.19%. We attributed the reduced sandstone’ mechanical properties to the degenerated sandstone microstructure, which, in turn, was associated with increased sandstone macropores. The macroscopic failure pattern of sandstone changed from splitting failure to shear failure with an increasing of freeze–thaw cycles. Moreover, the activity of AE signal increased at each stage, and the cumulative ringing count also showed upward trend with the increase of freeze–thaw number.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Zheng Pan ◽  
Keping Zhou ◽  
Rugao Gao ◽  
Zhen Jiang ◽  
Chun Yang ◽  
...  

The evolution of the rock pore structure is an important factor influencing rock mechanical properties in cold regions. To study the mesoscopic evolution law of the rock pore structure under freeze-thaw weathering cycles, a freeze-thaw weathering cycle experiment was performed on red sandstone from the cold region of western China with temperatures ranging from -20°C to +20°C. The porosity, T2 spectral distribution, and magnetic resonance imaging (MRI) characteristics of the red sandstone after 0, 20, 40, 60, 80, 100, and 120 freeze-thaw weathering cycles were measured by the nondestructive detection technique nuclear magnetic resonance (NMR). The results show that the porosity of sandstone decreases first and then increases with the increase of the freeze-thaw weathering cycles and reaches the minimum at 60 of freeze-thaw weathering cycles. The evolution characteristics of porosity can be divided into three stages, namely, the abrupt decrease in porosity, the slow decrease in porosity, and the steady increase in porosity. The evolution characteristics of the T2 spectrum distribution, movable fluid porosity (MFP), and MRI images in response to the freeze-thaw weathering process are positively correlated with the porosity. Analysis of the experimental data reveals that the decrease in the porosity of the red sandstone is mainly governed by mesopores, which is related to the water swelling phenomenon of montmorillonite. Hence, the pore connectivity decreases. As the number of freeze-thaw cycles increases, the effect of the hydrophysical reaction on the porosity gradually disappears, and the frost heaving effect caused by the water-ice phase transition gradually dominates the pore evolution law of red sandstone.


2018 ◽  
Vol 9 (1) ◽  
pp. 60 ◽  
Author(s):  
Wensheng Wang ◽  
Yongchun Cheng ◽  
Guirong Ma ◽  
Guojin Tan ◽  
Xun Sun ◽  
...  

The main distresses of asphalt pavements in seasonally frozen regions are due to the effects of water action, freeze-thaw cycles, and so on. Basalt fiber, as an eco-friendly mineral fiber with high mechanical performance, has been adopted to reinforce asphalt mixture in order to improve its mechanical properties. This study investigated the freeze-thaw damage characteristics of asphalt mixtures reinforced with eco-friendly basalt fiber by volume and mechanical properties—air voids, splitting tensile strength, and indirect tensile stiffness modulus tests. Test results indicated that asphalt mixtures reinforced with eco-friendly basalt fiber had better mechanical properties (i.e., splitting tensile strength and indirect tensile stiffness modulus) before and after freeze-thaw cycles. Furthermore, this study developed logistic damage models of asphalt mixtures in terms of the damage characteristics, and found that adding basalt fiber could significantly reduce the damage degree by about 25%, and slow down the damage grow rate by about 45% compared with control group without basalt fiber. Moreover, multi-variable grey models (GM) (1,N) were established for modelling the damage characteristics of asphalt mixtures under the effect of freeze-thaw cycles. GM (1,3) was proven as an effective prediction model to perform better in prediction accuracy compared to GM (1,2).


2013 ◽  
Vol 47 (6) ◽  
pp. 1997-2004 ◽  
Author(s):  
Xuedong Luo ◽  
Nan Jiang ◽  
Changqun Zuo ◽  
Zhenwei Dai ◽  
Suntao Yan

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-20
Author(s):  
Yongjun Song ◽  
Yongxin Che ◽  
Leitao Zhang ◽  
Jianxi Ren ◽  
Shaojie Chen ◽  
...  

To investigate the time-dependent mechanical properties of rock masses in cold regions under the effects of freeze-thaw cycling and long-term loading, triaxial multilevel loading and unloading creep tests were performed on saturated red sandstone samples subjected to different numbers of freeze-thaw cycles. The effects of freeze-thaw cycles and confining pressure on the creep properties, long-term strength, and creep failure mode of the rock were analyzed. The effect of freeze-thaw cycles on the microstructure of the rock was analyzed using scanning electron microscopy. The results showed that as the number of freeze-thaw cycles increased, the rock particle boundaries became more distinct, and more pores formed. The effect of freeze-thaw cycles on the creep deformation of red sandstone was related to the loading stress level. At low stress levels, the rock viscoelastic strain increased gradually and almost linearly with an increasing number of freeze-thaw cycles; in contrast, at high stress levels, the rock viscoelastic strain increased nonlinearly. The viscoplastic strain increased almost linearly with increasing freeze-thaw cycles. The fourth loading stress level (70% σ c ) corresponded to the transition of the creep deformation of the red sandstone. When the confining pressure was low, a higher stress level caused the confining pressure to have a more significant effect on the creep strain. However, as the confining pressure continued to increase, the effect of the confining pressure on the creep strain eventually disappeared. The long-term strength of the red sandstone decreased approximately linearly with an increase in the number of freeze-thaw cycles. When the number of freeze-thaw cycles and the confining pressure were high, the rock samples formed a transverse shear plane and were more fragmented than those without a transverse shear plane. These results provide a reference for construction in rock mass engineering and long-term stability analysis in cold regions.


Sign in / Sign up

Export Citation Format

Share Document