scholarly journals Further Investigation on Damage Model of Eco-Friendly Basalt Fiber Modified Asphalt Mixture under Freeze-Thaw Cycles

2018 ◽  
Vol 9 (1) ◽  
pp. 60 ◽  
Author(s):  
Wensheng Wang ◽  
Yongchun Cheng ◽  
Guirong Ma ◽  
Guojin Tan ◽  
Xun Sun ◽  
...  

The main distresses of asphalt pavements in seasonally frozen regions are due to the effects of water action, freeze-thaw cycles, and so on. Basalt fiber, as an eco-friendly mineral fiber with high mechanical performance, has been adopted to reinforce asphalt mixture in order to improve its mechanical properties. This study investigated the freeze-thaw damage characteristics of asphalt mixtures reinforced with eco-friendly basalt fiber by volume and mechanical properties—air voids, splitting tensile strength, and indirect tensile stiffness modulus tests. Test results indicated that asphalt mixtures reinforced with eco-friendly basalt fiber had better mechanical properties (i.e., splitting tensile strength and indirect tensile stiffness modulus) before and after freeze-thaw cycles. Furthermore, this study developed logistic damage models of asphalt mixtures in terms of the damage characteristics, and found that adding basalt fiber could significantly reduce the damage degree by about 25%, and slow down the damage grow rate by about 45% compared with control group without basalt fiber. Moreover, multi-variable grey models (GM) (1,N) were established for modelling the damage characteristics of asphalt mixtures under the effect of freeze-thaw cycles. GM (1,3) was proven as an effective prediction model to perform better in prediction accuracy compared to GM (1,2).

2012 ◽  
Vol 204-208 ◽  
pp. 3934-3937 ◽  
Author(s):  
Bao Yang Yu ◽  
Yu Wang ◽  
Min Jiang Zhang

The objectives of this paper are to characterize the mechanical properties of porous asphalt pavement mixtures containing RAP and a WMA additive using Super pave gyratory compactor and dynamic modulus testing. Four types of asphalt mixtures were evaluated in this study. This study evaluated compaction energy index, permeability, indirect tensile strength, and dynamic modulus for all types of porous asphalt mixtures. All of the asphalt mixtures meet the typical minimum coefficient of permeability in this study. In addition, only a slight decrease in was found when WMA additive was added to the porous asphalt mixture containing RAP. For indirect tensile strength testing, WMA containing RAP was found to have the highest tensile strength among all of the mixtures tested.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2488 ◽  
Author(s):  
Yongchun Cheng ◽  
Wensheng Wang ◽  
Yafeng Gong ◽  
Shurong Wang ◽  
Shuting Yang ◽  
...  

The main distresses of asphalt pavements in seasonal frozen regions are due to the effects of water action, freeze-thaw cycles, traffic, and so on. Fibers are usually used to reinforce asphalt mixtures, in order to improve its mechanical properties. Basalt fiber is an eco-friendly mineral fiber with high mechanical performance, low water absorption, and an appropriate temperature range. This paper aims to address the freeze-thaw damage characteristics of asphalt mixtures (AC-13) reinforced with eco-friendly basalt fiber, with a length of 6 mm. Based on the Marshall design method and ordinary pavement performances, including rutting resistance, anti-cracking, and moisture stability, the optimum asphalt and basalt fiber contents were determined. Test results indicated that the pavement performances of asphalt mixture exhibited a trend of first increasing and then deceasing, with the basalt fiber content. Subsequently, asphalt mixtures with a basalt fiber content of 0.4% were prepared for further freeze-thaw tests. Through the comparative analysis of air voids, splitting strength, and indirect tensile stiffness modulus, it could be found that the performances of asphalt mixtures gradually declined with freeze-thaw cycles and basalt fiber had positive effects on the freeze-thaw resistance. This paper can be used as a reference for further investigation on the freeze-thaw damage model of asphalt mixtures with basalt fiber.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Haibin Wei ◽  
Ziqi Li ◽  
Yubo Jiao

Asphalt mixture is susceptible to moisture damage under the effect of freeze-thaw (F-T) cycles. In this paper, crumb rubber (CR) was used to modify stone mastic asphalt (SMA) and the effects of diatomite and styrene butadiene styrene (SBS) on antifreezing performances of crumb rubber modified SMA (CRSMA) were investigated. Regression analysis and modified grey model (MGM) were used to construct the prediction models for properties of modified mixtures. CRSMA, CR and diatomite modified SMA (CRDSMA), and CR and SBS modified SMA (CRSSMA) were prepared in laboratory, respectively. Process of F-T cycles was designed. Air void, indirect tensile strength (ITS), and indirect tensile stiffness modulus (ITSM) were measured to evaluate the antifreezing performances of CRSMA, CRDSMA, and CRSSMA. Results indicate that air voids increase with the increasing of F-T cycles. ITS and ITSM all decrease with the increasing of F-T cycles. The addition of diatomite and SBS can reduce the air void and improve the ITS and ITSM of CRSMA. CRSSMA presents the lowest air void, highest tensile strength, and largest stiffness modulus, which reveals that CRSSMA has the best F-T resistance among three different kinds of mixtures. Moreover, MGM (1, 2) models present more favorable accuracy in prediction of air void and ITS compared with regression ones.


Author(s):  
Rabeea W. Bazuhair ◽  
Carl V. Pittman ◽  
Isaac L. Howard ◽  
Walter S. Jordan ◽  
James Michael Hemsley ◽  
...  

Asphalt mixes often have many ingredients that can interact with each other. When put into service, where there are multiple environmental effects, there are many interactions that need mixture testing. This paper’s objective was to evaluate laboratory conditioning protocols coupled with subsequent property measurements for their ability to detect damage of asphalt mixtures in the southeastern U.S. climate (or similar climates). The investigation’s focus is the property measurements themselves, and in particular how a given test can simultaneously assess multiple types of damage (i.e. oxidation, moisture damage, and freeze-thaw damage). While in service, mixtures can be damaged in multiple manners so laboratory conditioning protocols that expose specimens to multiple types of damage are needed as are test(s) that can detect these damages in a manner that can help assess performance during service. Four plant produced mixtures with all virgin ingredients were evaluated at intermediate temperatures with mixture and binder tests. The mixtures were well suited for such a comparison because they consisted of all virgin binder. Indirect tensile (IDT) strength did not relate to Cantabro Mass Loss (CML) or binder test results, which was concerning. Even more concerning was IDT’s inability to respond to laboratory conditioning protocols that considered multiple environmental effects (i.e., oxidation, moisture, and freeze-thaw). CML results related to binder properties and were able to reasonably detect multiple types of environmental effects. As such, Cantabro testing is recommended over tensile strength for intermediate temperature mixture property assessments related to non-load associated environmental effects.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Sheng Wang ◽  
Aihong Kang ◽  
Peng Xiao ◽  
Bo Li ◽  
Weili Fu

Porous asphalt mixture is a type of asphalt mixture with good drainage. However, it has poor tensile strength performance and durability. Chopped basalt fibers (CBF) have been proved to be an effective additive to improve the mechanical and fatigue performance of asphalt mixtures, but little attention has been paid on porous asphalt mixture. This paper examined the effect of chopped basalt fibers with different lengths (nonfiber, 3 mm, 6 mm, 9 mm, and 12 mm) and contents (3% and 4%) on the performance of the porous asphalt mixture. A series of tests were conducted to figure out the optimum fiber length and content, including draindown test, cantabro abrasion test, freeze-thaw split tensile test, wheel tracking test, low-temperature cracking resistance test, and four-point bending beam test. Thereafter, indirect tensile tests at different temperatures were conducted to investigate the tensile strength properties of porous asphalt mixtures with optimum fiber length and content. Besides, the macroscopic and microscopic morphology of fracture sections of the samples after indirect tensile tests were studied by using a single-lens reflex (SLR) camera and scanning electron microscopy (SEM) so as to further explore the reinforced mechanism of chopped basalt fibers. The results show that the addition of chopped basalt fibers can generally improve the performance of porous asphalt mixture since chopped basalt fibers form a three-dimensional network structure in the porous asphalt mixture.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7060
Author(s):  
Mohammad Alharthai ◽  
Qing Lu ◽  
Ahmed Elnihum ◽  
Asad Elmagarhe

This study investigates the substitution of conventional aggregate with a Florida washed shell in open-graded asphalt mixtures and evaluates the optimal substitution percentage in aggregate gradations of various nominal maximum aggregate sizes (NMASs) (i.e., 4.75, 9.5, and 12.5 mm). Laboratory experiments were performed on open-graded asphalt mixture specimens with the coarse aggregate of sizes between 2.36 and 12.5 mm being replaced by the Florida washed shell at various percentages (0, 15, 30, 45, and 100%). Specimen properties relevant to the performance of open-graded asphalt mixtures in the field were tested, evaluated, and compared. Specifically, a Marshall stability test, Cantabro test, indirect tensile strength test, air void content test, and permeability test were conducted to evaluate the strength, resistance to raveling, cracking resistance, void content, and permeability of open-graded asphalt mixtures. The results show that there is no significant difference in the Marshall stability and indirect tensile strength when the coarse aggregates are replaced with Florida washed shell. This study also found that the optimum percentages of Florida washed shell in open-graded asphalt mixture were 15, 30, and 45% for 12.5, 9.5, and 4.75 mm NMAS gradations, respectively.


Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1804
Author(s):  
Wensheng Wang ◽  
Guojin Tan ◽  
Chunyu Liang ◽  
Yong Wang ◽  
Yongchun Cheng

This study aims to study the viscoelastic properties of asphalt mixtures incorporating styrene–butadiene–styrene (SBS) polymer and basalt fiber under freeze–thaw (F-T) cycles by using the static creep test. Asphalt mixture samples incorporating styrene–butadiene–styrene (SBS) polymer and basalt fiber were manufactured following the Superpave gyratory compaction (SGC) method and coring as well as sawing. After 0 to 21 F-T cycles processing, a uniaxial compression static creep test for the asphalt mixture specimens was performed to evaluate the influence of F-T cycles. The results indicated that the F-T cycles caused a larger creep deformation in the asphalt mixtures, which led to a decrease in the rut resistance of the asphalt mixtures incorporating SBS polymer and basalt fiber. Besides, the resistance to deformation decreased significantly in the early stage of F-T cycles. On the other hand, the viscoelastic parameters were analyzed to discuss the variation of viscoelastic characteristics. The relaxation time increased with F-T cycles, which will not be conducive to internal stress dissipation. Compared with lignin fiber, basalt fiber can improve the resistance to high-temperature deformation and the low-temperature crack resistance of asphalt mixtures under F-T cycles.


2012 ◽  
Vol 457-458 ◽  
pp. 435-438
Author(s):  
Xue Dong Guo ◽  
Cao Jian ◽  
Xiang Yang Fang

In this paper,study water content and water stability of AC and SMA asphalt mixtures, and reach the following conclusions. In the normal saturated condition, the maximum water content of AC and SMA asphalt mixture is 0.28% and 0.32%.And in the vacuum saturated condition, the maximum water content of AC and SMA asphalt mixture is 0.8% and 0.78%.The water of AC and SMA asphalt mixture separately take 8 days and 9 days to drain completely in the normal saturated condition. But in the vacuum saturated condition, the time is more than two months. In different water content conditions, the splitting tensile strength of AC asphalt mixture is 0%> 100%> 25%> 75%> 50%.But the splitting tensile strength of SMA asphalt mixture is 0%> 100%> 25%> 50%> 75%.


2011 ◽  
Vol 255-260 ◽  
pp. 3432-3436
Author(s):  
Xian Yuan Tang ◽  
Jie Xiao

This paper systematically elaborates the impact upon performance of emulsion asphalt cold reclaimed asphalt mixture by different RAP contents, through a series of testing on six cold reclaimed asphalt mixtures with various RAP contents, such as single axle compression test, 15°C indirect tensile strength (ITS) test, 40°C rutting test and -10°C low-temperature bending beam test. Testing results indicate that 15°C ITS decreases from around 0.75 MPa to 0.58 MPa with the RAP content of mixture increasing from 0% to 100%. 40°C dynamic stabilities reduce considerably from around 19,000 time/mm of 0% RAP mixture to 3,600 time/mm of 100% RAP mixture. -10°C failure strains only change from 1500με to 2000με.


2011 ◽  
Vol 243-249 ◽  
pp. 710-716 ◽  
Author(s):  
Ying Chun Cai ◽  
Yuan Xun Zheng

To study the influence of fiber on the water stability of asphalt mixtures, the optimum dosage of asphalt and fibers are studied by the method of Marshall test and rut test. The results demonstrate that the optimum dosage of asphalt and fibers are 4.63% and 0.30%, respectively. Then the improved effects of basalt fiber on water stability of asphalt mixtures are evaluated through immersed Marshall test and freeze-thaw splitting test according to related specifications. The results show that the freeze-thaw splitting strength and splitting strength without freeze-thaw of fiber-reinforced asphalt mixture are improved to some extent compared with control mixture. Splitting strength without freeze-thaw of basalt, polyester and xylogen fiber-reinforced asphalt mixture is increased by 36.4%, 15.4% and 6.2%, and freeze-thaw splitting strength is increased by 55.2%, 28.7% and 14.5%. It can be concluded that fiber can remarkably improved the water stability of asphalt mixtures, besides; the improvement effects of basalt fiber are superior to polyester fiber and xylogen fiber.


Sign in / Sign up

Export Citation Format

Share Document