scholarly journals Clinical and histological evaluation of a dual sequential application of fractional 10,600 nm and 1570 nm lasers, compared to single applications in a porcine model

Author(s):  
Igor Snast ◽  
Moshe Lapidoth ◽  
Assi Levi

Abstract The sequential application of fractional ablative/10,600 nm/CO2 followed by 1570 nm non-ablative laser treatment might produce better results than applying either laser treatment alone. However, histological data regarding the safety of this combination is lacking. This study aimed to assess and compare clinical effects, histological tissue damage, and wound healing after monochromatic and sequential fractional laser treatments. In this prospective porcine model study, three adult female pigs were each irradiated using three different wavelengths: (a) monochromatic fractional ablative CO2 laser; (b) monochromatic fractional non-ablative 1570 nm laser; (c) sequential fractional 10,600 nm/CO2 followed by 1570 nm laser treatment. There were six power levels in the monochromatic 1570 nm laser, five in the 10,600 nm/CO2, and five in the sequential treatment. The immediate skin reaction (ISR), crusting and adverse effects, was evaluated across different time points throughout the healing process. Wound biopsies were taken at immediately after (0) and at 3, 7, and 14 days after irradiation. Depth and width of craters, and width of coagulation zone were measured and compared. Similar ISR and crusting score values were obtained following the monochromatic and sequential irradiation in a similar dose–response manner. During 14 days of follow-up, the skin looked intact and non-infected with no signs of necrosis. The mean depth and width of craters were comparable only at the maximal energy level (240 mJ) of CO2 laser, with the coagulation size greater after the sequential treatment. In histology, a similar wound healing was evident. On day 3, crusts were observed above all lesions as was epithelial regeneration. The sequential irradiation with 10,600 nm/CO2 and 1570 nm lasers did not pose any additional risk compared to the risk of each laser alone.

2018 ◽  
Vol 32 (8) ◽  
pp. 1011-1023 ◽  
Author(s):  
Ji-Ung Park ◽  
Seol-Ha Jeong ◽  
Eun-Ho Song ◽  
Juha Song ◽  
Hyoun-Ee Kim ◽  
...  

In this study, we evaluated the surface characterization of a novel chitosan–silica hybridized membrane and highlighted the substantial role of silica in the wound environment. The chemical coupling of chitosan and silica resulted in a more condensed network compared with pure chitosan, which was eventually able to stably maintain its framework, particularly in the wet state. In addition, we closely observed the wound-healing process along with the surface interaction between chitosan–silica and the wound site using large-surface-area wounds in a porcine model. Our evidence indicates that chitosan–silica exerts a synergetic effect of both materials to promote a remarkable wound-healing process. In particular, the silica in chitosan–silica accelerated wound closure including wound contraction, and re-epithelialization via enhancement of cell recruitment, epidermal maturity, neovascularization, and granulation tissue formation compared with pure chitosan and other commercial dressing materials. This advanced wound dressing material may lead to effective treatment for problematic cutaneous wounds and can be further applied for human skin regeneration.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yan Xu ◽  
Ze Lin ◽  
Lei He ◽  
Yanzhen Qu ◽  
Liu Ouyang ◽  
...  

Epithelial regeneration is an essential wound healing process, and recent work suggests that different types of exosomes (Exos) can improve wound repair outcomes by promoting such epithelial regeneration. Platelet-rich plasma (PRP) is known to facilitate enhanced wound healing, yet the mechanisms underlying its activity are poorly understood. To explore these mechanisms, we first isolated PRP-derived Exos (PRP-Exos). Using immortalized keratinocytes (HaCaT cells) treated with PBS, PRP, or PRP-Exos, we conducted a series of in vitro Cell Counting Kit-8 (CCK-8), EdU, scratch wound, and transwell assays. We then established a wound defect model in vivo in mice and assessed differences in the mRNA expression within these wounds to better understand the basis for PRP-mediated wound healing. The functions of PRP-Exos and USP15 in the context of wound healing were then confirmed through additional in vitro and in vivo experiments. We found that PRP-Exos effectively promoted the in vitro proliferation, migration, and wound healing activity of HaCaT cells. USP15 was further identified as a key mediator through which these PRP-Exos were able to promote tissue repair both in vitro and in vivo. At a mechanistic level, USP15 enhanced the functional properties of HaCaT cells by promoting EIF4A1 deubiquitination. Thus, PRP-Exos and USP15 represent promising tools that can promote wound healing via enhancing epithelial regeneration.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0260095
Author(s):  
Joseph D. Sherrill ◽  
Deborah Finlay ◽  
Robert L. Binder ◽  
Michael K. Robinson ◽  
Xingtao Wei ◽  
...  

Ablative fractional laser treatment is considered the gold standard for skin rejuvenation. In order to understand how fractional laser works to rejuvenate skin, we performed microarray profiling on skin biopsies to identify temporal and dose-response changes in gene expression following fractional laser treatment. The backs of 14 women were treated with ablative fractional laser (Fraxel®) and 4 mm punch biopsies were collected from an untreated site and at the treated sites 1, 3, 7, 14, 21 and 28 days after the single treatment. In addition, in order to understand the effect that multiple fractional laser treatments have on skin rejuvenation, several sites were treated sequentially with either 1, 2, 3, or 4 treatments (with 28 days between treatments) followed by the collection of 4 mm punch biopsies. RNA was extracted from the biopsies, analyzed using Affymetrix U219 chips and gene expression was compared between untreated and treated sites. We observed dramatic changes in gene expression as early as 1 day after fractional laser treatment with changes remaining elevated even after 1 month. Analysis of individual genes demonstrated significant and time related changes in inflammatory, epidermal, and dermal genes, with dermal genes linked to extracellular matrix formation changing at later time points following fractional laser treatment. When comparing the age-related changes in skin gene expression to those induced by fractional laser, it was observed that fractional laser treatment reverses many of the changes in the aging gene expression. Finally, multiple fractional laser treatments, which cover different regions of a treatment area, resulted in a sustained or increased dermal remodeling response, with many genes either differentially regulated or continuously upregulated, supporting previous observations that maximal skin rejuvenation requires multiple fractional laser treatments. In conclusion, fractional laser treatment of human skin activates a number of biological processes involved in wound healing and tissue regeneration.


2021 ◽  
Author(s):  
Joseph D Sherrill ◽  
Deborah Finlay ◽  
Robert L Binder ◽  
Michael K Robinson ◽  
Xingtao Wei ◽  
...  

Ablative fractional laser treatment is considered the gold standard for skin rejuvenation. In order to understand how fractional laser works to rejuvenate skin, we performed microarray profiling on skin biopsies to identify temporal and dose-response changes in gene expression following fractional laser treatment. The backs of 14 women were treated with ablative fractional laser (Fraxel) and 4 mm punch biopsies were collected from an untreated site and at the treated sites 1, 3, 7, 14, 21 and 28 days after the single treatment. In addition, in order to understand the effect that multiple fractional laser treatments have on skin rejuvenation, several sites were treated sequentially with either 1, 2, 3, or 4 treatments (with 28 days between treatments) followed by the collection of 4 mm punch biopsies. RNA was extracted from the biopsies, analyzed using Affymetrix U219 chips and gene expression was compared between untreated and treated sites. We observed dramatic changes in gene expression as early as 1 day after fractional laser treatment with changes remaining elevated even after 1 month. Analysis of individual genes demonstrated significant and time related changes in inflammatory, epidermal, and dermal genes, with dermal genes linked to extracellular matrix formation changing at later time points following fractional laser treatment. When comparing the age-related changes in skin gene expression to those induced by fractional laser, it was observed that fractional laser treatment reverses many of the changes in the aging gene expression. Finally, multiple fractional laser treatments resulted in continued changes in gene expression, with many genes either differentially regulated or continuously upregulated with increasing number of treatments, indicating that maximal skin rejuvenation requires multiple fractional laser treatments. In conclusion, fractional laser treatment of skin activates several biological processes involved in wound healing and tissue regeneration, all of which significantly contribute to the rejuvenating effect of fractional laser treatment on aged skin.


Pharmaceutics ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 8
Author(s):  
José L. Soriano ◽  
Ana C. Calpena ◽  
María J. Rodríguez-Lagunas ◽  
Òscar Domènech ◽  
Nuria Bozal-de Febrer ◽  
...  

The main goal of this work is the study of the skin wound healing efficacy of an antioxidant cocktail consisting of vitamins A, D, E and the endogenous pineal hormone melatonin (MLT), with all of these loaded into a thermosensitive hydrogel delivery system. The resulting formulation was characterized by scanning electron microscopy. The antioxidant efficacy and microbiological activity against Gram positive and Gram negative strains were also assayed. The skin healing efficacy was tested using an in vivo model which included histological evaluation. Furthermore, atomic force microscopy was employed to evaluate the wound healing efficacy of rat skin burns through the determination of its elasticity at the nanoscale using force spectroscopy analysis. The resulting hydrogel exhibited sol state at low temperature and turned into a gel at 30 ± 0.2 °C. The hydrogel containing the antioxidant cocktail showed higher scavenging activity than the hydrogel containing vitamins or MLT, separately. The formulation showed optimal antimicrobial activity. It was comparable to a commercial reference. It was also evidenced that the hydrogel containing the antioxidant cocktail exhibited the strongest healing process in the skin burns of rats, similar to the assayed commercial reference containing silver sulfadiazine. Histological studies confirmed the observed results. Finally, atomic force microscopy demonstrated a similar distribution of Young’s modulus values between burned skin treated with the commercial reference and burned skin treated with hydrogel containing the antioxidant cocktail, and all these with healthy skin. The use of an antioxidant cocktail of vitamins and MLT might be a promising treatment for skin wounds for future clinical studies.


2016 ◽  
Vol 18 (4) ◽  
pp. 411-419 ◽  
Author(s):  
Eva L. Arantes ◽  
Nathalia Dragano ◽  
Albina Ramalho ◽  
Daniele Vitorino ◽  
Gabriela F. de-Souza ◽  
...  

Background: The development of methods for improving skin wound healing may have an impact on the outcomes of a number of medical conditions. The topical use of polyunsaturated fatty acids (PUFAs) can accelerate skin wound healing through mechanisms that involve, at least in part, the modulation of inflammatory activity. Purpose: We evaluated whether G-protein-coupled receptor 120 (GPR120), a recently identified receptor for docosahexaenoic acid (DHA) with anti-inflammatory activity, is expressed in the skin and responds to topical DHA. Method: Male Wistar rats were submitted to an 8.0-mm wound on the back and were immediately administered a topical treatment of a solution containing 30 μM of DHA once a day. The healing process was photodocumented, and tissues were collected on Days 5, 9, and 15 for protein and RNA analyses and histological evaluation. Results: GPR120 was expressed in the intact skin and in the wound. Keratinocytes expressed the most skin GPR120, while virtually no expression was detected in fibroblasts. Upon DHA topical treatment, wound healing was significantly accelerated and was accompanied by the molecular activation of GPR120, as determined by its association with β-arrestin-2. In addition, DHA promoted a reduction in the expression of interleukin (IL) 1β and an increase in the expression of IL-6. Furthermore, there was a significant increase in expression of transforming growth factor β (TGF-β) and the keratinocyte marker involucrin. Discussion: Topical DHA improved skin wound healing. The activation of GPR120 is potentially involved in this process.


2013 ◽  
Vol 4 (11) ◽  
pp. 2362 ◽  
Author(s):  
Meng-Tsan Tsai ◽  
Chih-Hsun Yang ◽  
Su-Chin Shen ◽  
Ya-Ju Lee ◽  
Feng-Yu Chang ◽  
...  

2001 ◽  
Vol 10 (2) ◽  
pp. 79-88 ◽  
Author(s):  
U. B. Hoyme ◽  
M. Hagedorn ◽  
A.-E. Schindler ◽  
P. Schneede ◽  
W. Hopfenmüller ◽  
...  

Objectives:Imiquimod is an immune response modifier that has demonstrated a good efficacy and relatively low recurrencerates in comparison to other genitalwart treatment modalities. The primary objective of this open-label study was to evaluate the effect on sustained clearance of treated lesions and the safety of patient-applied topical imiquimod after laser therapy of external anogenital warts.Methods:After laser treatment of visible external anogenital warts the ablated region(s) were treated with imiquimod 5% cream three times/week over 12 weeks beginningwhen the wound healing process was completed, followed by a six-month treatment-free observation period for the assessment of sustained clearance of treated lesions.Results:A total of 211 male and female patients was enrolled in the study. After 12 weeks of treatment, 65.4% of all patients showed sustained clearance. During the treatment period, 15 patients (7.1% of 211 patients) presented with recurrent warts in the treated areas, and 58 (27.5%) patients were excluded for other reasons. During the six-month follow-up period, ten additional patients (7.3% of 138 patients) developed wart recurrences. The application of imiquimod 5% cream was well tolerated. The number of patients with adverse events related to studymedication declined fromthe first month of treatment until the end of the third month.Most frequently, mild to moderate itching, burning, pain and erythema were reported.Conclusions:After laser therapy and sufficient wound healing, administration of imiquimod 5% cream three times/week appears to be safe and to reduce the incidence of wart recurrences.


Author(s):  
Andri Subiantoro ◽  
Arie Utariani ◽  
Imam Susilo

Surgical incision wounds causing clinical pain. Inadequate postoperative pain management resulting in impaired wound healing. A critical factor in wound healing is angiogenesis. VEGF is one of the important factors and regulators of angiogenesis. The aim of this study is to analyze the effect of infiltration ropivacaine on VEGF expression, and the formation of new blood vessels, which is very instrumental in the wound healing process. Methods: Twenty-four Wistar rats were divided into two groups, and then superficial-thickness excisional wounds were created. One was treated by ropivacaine infiltration, and the other was not given ropivacaine infiltration as control group. Each of the groups was divided into two subgroups. Each of the subgroups composed of 6 Wistar rats based on the period of termination: 3rd, 7th day after wounding. Histological evaluation was done to determine the presence of new small blood vessels and the expression of VEGF of capillary endothelial cells. The data collected is then analysed by SPSS. Results: The administration of ropivacaine infiltration on superficial-thickness excisional wounds improved wound healing characterized by neovascularization formed and changed of expression of VEGF within cytoplasm or surface of endothelial cells Conclusion: The administration of ropivacaine infiltration has a beneficial effect on the healing process of superficial Wistar rats.


Medicina ◽  
2022 ◽  
Vol 58 (1) ◽  
pp. 73
Author(s):  
Yuta Niimi ◽  
Kyoko Baba ◽  
Masako Tsuchida ◽  
Akira Takeda

Background and Objectives: Wound healing (WH) is a complex natural process: the achieving of a proper WH with standard therapies sometimes is not fulfilled and it is often observed in aged and diabetic patients, leading to intractable ulcers. In recent years, autologous micrograft (AMG) therapies have become a new, effective, and affordable wound care strategy among both researchers and clinicians. In this study, a 72-year-old female patient underwent a combination of treatments using micrograft and negative pressure wound therapy (NPWT) on a postoperative skin ulcer after a benign tumor resection on the back with the aim to present an innovative method to treat skin ulceration using AMG combined with an artificial dermal scaffold and NPWT. Materials and Methods: A section of the artificial dermal scaffold, infused with micrografts, was sampled prior to transplant, and sections were collected postoperatively on days 3 and 7. Hematoxylin-eosin (HE) and immunohistochemical stains were employed for the evaluation of Cytokeratin AE1/AE3, desmin, and Factor VIII. Additionally, on postoperative day 3, NPWT dressing was evaluated using HE stains, as well. The resulting HE and immunostaining analysis revealed red blood cells and tissue fragments within the collagen layers of the artificial dermis prior to transplant. On postoperative day 3, collagen layers of the artificial dermis revealed red blood cells and neutrophils based on HE stains, and scattering of cytokeratin AE1/AE3-positive cells were detected by immunostaining. The HE stains on postoperative day 7 showed more red blood cells and neutrophils within the collagen layers of the artificial dermis than on day 3, an increase in cytokeratin AE1/AE3-positive cells, and tissue stained positively with desmin and Factor VIII. Results: Results suggest that the effects of both micrografts and migratory cells have likely accelerated the wound healing process. Furthermore, the NPWT dressing on day 3 showed almost no cells within the dressing. This indicated that restarting NPWT therapy immediately after micrograft transplant did not draw out cells within the scaffold. Conclusions: Micrograft treatment and NPWT may serve to be a useful combination therapy for complex processes of wound healing.


Sign in / Sign up

Export Citation Format

Share Document