The SoNAP gene from sugarcane (Saccharum officinarum) encodes a senescence-associated NAC transcription factor involved in response to osmotic and salt stress

2020 ◽  
Vol 133 (6) ◽  
pp. 897-909
Author(s):  
Evelyn A. Carrillo-Bermejo ◽  
Samuel David Gamboa-Tuz ◽  
Alejandro Pereira-Santana ◽  
Miguel A. Keb-Llanes ◽  
Enrique Castaño ◽  
...  
2015 ◽  
Vol 96 ◽  
pp. 356-363 ◽  
Author(s):  
Zhongyang Xu ◽  
Gongbuzhaxi ◽  
Changyou Wang ◽  
Fei Xue ◽  
Hong Zhang ◽  
...  

Forests ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 688 ◽  
Author(s):  
Wang ◽  
Huang ◽  
Wang ◽  
Dang ◽  
Jiang ◽  
...  

Research Highlights: Sequence phylogeny, genome organisation, gene structure, conserved motifs, promoter cis-element and expression profiling of poplar NACs related to salt stress were detected. In addition, expression of two salt-induced NACs was analysed. Background and Objectives: NAC transcription factor (TF) proteins are involved in a wide range of functions during plant development and stress-related endurance processes. To understand the function of Populus NAC TFs in salt stress tolerance, we characterised the structure and expression profile of a total of 289 NAC members. Materials and Methods: Sequence phylogeny, genome organisation, gene structure, motif composition and promoter cis-element were detected using bioinformatics. The expression pattern of Populus NAC TFs under salt stress was also detected using RNA-Seq and RT-qPCR. Results: Synteny analysis showed that 46 and 37 Populus NAC genes were involved in whole-genome duplication and tandem duplication events, respectively. The expression pattern of Populus NAC TFs under salt stress showed the expression of the 289 PtNACs of 84K poplar was induced. Similar expression trends of NACs were found in Populus simonii × P. nigra T. S. Hwang et Liang and Arabidopsis thaliana (L.) Heynh. Conclusions: The correlation analysis showed that the expression of two differentially expressed NAC genes PtNAC024 and PtNAC182 was significantly associated with most of the 63 differentially expressed genes tested. The expression of PtNAC024 and PtNAC182 in different tissues was also analysed in silico and different expression patterns were found. Together, this study provides a solid basis to explore stress-related NAC TF functions in Populus salt tolerance and development.


Author(s):  
Qing Cao ◽  
Peiqi An ◽  
Sufang Zhang ◽  
Junhui Wang ◽  
Hanguo Zhang ◽  
...  

AbstractThe NAC transcription factor family is plant-specific with various biological functions. However, there are few studies on the NAC gene involving coniferous species. Bioinformatics research and expression analysis of NAC genes in Larix olgensis can be used to analyse the function of the NAC gene in the future. Screening of excellent genetic materials and molecular breeding have been utilized to cultivate high-quality, stress-resistant larches. According to the transcriptome data for L. olgensis, the genes Unigene81490 and Unigene70699 with complete ORFs (open reading frames) were obtained by conserved domain analysis and named LoNAC1 and LoNAC2, respectively. The cDNAs of LoNAC1 and LoNAC2 were 1971 bp and 1095 bp in length, encoding 656 and 364 amino acids, respectively. The molecular weights of the proteins encoded by the two genes were predicted to be 72.61 kDa and 41.13 kDa, and subcellular localization analysis indicated that the proteins were concentrated in the nucleus. The results of real-time quantitative PCR analysis showed that at different growth stages and in different tissues of L. olgensis, the relative expression levels of the two NAC genes were highest in the stem, and the expression differences were more obvious in non-lignified tissues. After drought, salt and alkali stress and hormone treatment, expression was induced to different degrees. The expression levels of LoNAC1 and LoNAC2 in semi-lignified L. olgensis were higher than in the other two periods (non-lignified and lignified), and expression levels significantly increased under drought and salt stress. Relative expression levels changed under hormone treatment. It is speculated that these two genes may not only be related to drought and salt stress and secondary growth but may also be induced by hormones such as abscisic acid. Overall, LoNAC1 and LoNAC2 are genetic materials that can be used for molecular breeding of larch.


2018 ◽  
Vol 164 (3) ◽  
pp. 279-289 ◽  
Author(s):  
Jian-Ping An ◽  
Ji-Fang Yao ◽  
Rui-Rui Xu ◽  
Chun-Xiang You ◽  
Xiao-Fei Wang ◽  
...  

2020 ◽  
Vol 21 (6) ◽  
pp. 2177 ◽  
Author(s):  
Bo Li ◽  
Jia-Cheng Zheng ◽  
Ting-Ting Wang ◽  
Dong-Hong Min ◽  
Wen-Liang Wei ◽  
...  

Vascular plant one-zinc-finger (VOZ) transcription factor, a plant specific one-zinc-finger-type transcriptional activator, is involved in regulating numerous biological processes such as floral induction and development, defense against pathogens, and response to multiple types of abiotic stress. Six VOZ transcription factor-encoding genes (GmVOZs) have been reported to exist in the soybean (Glycine max) genome. In spite of this, little information is currently available regarding GmVOZs. In this study, GmVOZs were cloned and characterized. GmVOZ genes encode proteins possessing transcriptional activation activity in yeast cells. GmVOZ1E, GmVOZ2B, and GmVOZ2D gene products were widely dispersed in the cytosol, while GmVOZ1G was primarily located in the nucleus. GmVOZs displayed a differential expression profile under dehydration, salt, and salicylic acid (SA) stress conditions. Among them, GmVOZ1G showed a significantly induced expression in response to all stress treatments. Overexpression of GmVOZ1G in soybean hairy roots resulted in a greater tolerance to drought and salt stress. In contrast, RNA interference (RNAi) soybean hairy roots suppressing GmVOZ1G were more sensitive to both of these stresses. Under drought treatment, soybean composite plants with an overexpression of hairy roots had higher relative water content (RWC). In response to drought and salt stress, lower malondialdehyde (MDA) accumulation and higher peroxidase (POD) and superoxide dismutase (SOD) activities were observed in soybean composite seedlings with an overexpression of hairy roots. The opposite results for each physiological parameter were obtained in RNAi lines. In conclusion, GmVOZ1G positively regulates drought and salt stress tolerance in soybean hairy roots. Our results will be valuable for the functional characterization of soybean VOZ transcription factors under abiotic stress.


2021 ◽  
Vol 22 (13) ◽  
pp. 6952
Author(s):  
Mingxin Yu ◽  
Junling Liu ◽  
Bingshuai Du ◽  
Mengjuan Zhang ◽  
Aibin Wang ◽  
...  

NAC (NAM, ATAF1/2, and CUC2) transcription factors are ubiquitously distributed in eukaryotes and play significant roles in stress response. However, the functional verifications of NACs in Picea (P.) wilsonii remain largely uncharacterized. Here, we identified the NAC transcription factor PwNAC11 as a mediator of drought stress, which was significantly upregulated in P. wilsonii under drought and abscisic acid (ABA) treatments. Yeast two-hybrid assays showed that both the full length and C-terminal of PwNAC11 had transcriptional activation activity and PwNAC11 protein cannot form a homodimer by itself. Subcellular observation demonstrated that PwNAC11 protein was located in nucleus. The overexpression of PwNAC11 in Arabidopsis obviously improved the tolerance to drought stress but delayed flowering time under nonstress conditions. The steady-state level of antioxidant enzymes’ activities and light energy conversion efficiency were significantly increased in PwNAC11 transgenic lines under dehydration compared to wild plants. PwNAC11 transgenic lines showed hypersensitivity to ABA and PwNAC11 activated the expression of the downstream gene ERD1 by binding to ABA-responsive elements (ABREs) instead of drought-responsive elements (DREs). Genetic evidence demonstrated that PwNAC11 physically interacted with an ABA-induced protein—ABRE Binding Factor3 (ABF3)—and promoted the activation of ERD1 promoter, which implied an ABA-dependent signaling cascade controlled by PwNAC11. In addition, qRT-PCR and yeast assays showed that an ABA-independent gene—DREB2A—was also probably involved in PwNAC11-mediated drought stress response. Taken together, our results provide the evidence that PwNAC11 plays a dominant role in plants positively responding to early drought stress and ABF3 and DREB2A synergistically regulate the expression of ERD1.


2016 ◽  
pp. erw380 ◽  
Author(s):  
Guadalupe Sosa-Valencia ◽  
Miguel Palomar ◽  
Alejandra A. Covarrubias ◽  
José L. Reyes

Sign in / Sign up

Export Citation Format

Share Document