Identifying plant DNA in the sponging–feeding insect pest Drosophila suzukii

2018 ◽  
Vol 91 (3) ◽  
pp. 985-994 ◽  
Author(s):  
Felix Briem ◽  
Christiane Zeisler ◽  
Yasemin Guenay ◽  
Karin Staudacher ◽  
Heidrun Vogt ◽  
...  
2020 ◽  
Author(s):  
Antoine Rombaut ◽  
Romain Gallet ◽  
Kenza Qitout ◽  
Mukherjy Samy ◽  
Robin Guilhot ◽  
...  

AbstractSpecies that share the same resources often avoid costly competition with contextdependent behaviors. This is the case of the invasive insect pest Drosophila suzukii which larvae’s ecological niche overlaps with that of Drosophila melanogaster in ripe, but not rotten, fruit. Previous research showed D. suzukii prevents costly larval competition by not ovipositing in substrates with D. melanogaster eggs. We discovered D. suzukii females respond to cues produced by D. melanogaster adults associated to gut microbiota bacteria. This behavior of D. suzukii varied over time and among populations, revealing subtle condition-dependence. In particular, D. suzukii females that bore D. melanogaster gut bacteria stopped avoiding sites with D. melanogaster cues. The adaptive significance of the behavior was investigated by reproducing experimentally in-fruit larval competition. D. suzukii larvae only suffered from competition with D. melanogaster if the competitor was associated to its microbiota, suggesting D. suzukii has evolved a solution to avoid its offspring develops in challenging environments. We argue that D. suzukii’s competition avoidance behavior has features enabling the design of an evolution-proof repellent to protect crops.


Author(s):  
Jerry Asalma Nboyine ◽  
Stéphane Boyer ◽  
David J. Saville ◽  
Stephen David Wratten

Insects ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 313 ◽  
Author(s):  
Dasia S. Harmon ◽  
Muhammad Haseeb ◽  
Lambert H. B. Kanga ◽  
Oscar E. Liburd

Drosophila suzukii (Diptera: Drosophilidae) is an invasive insect pest that was detected in Florida in August 2009 in Hillsborough County. Very limited information is available for berry growers to properly detect and monitor this serious pest in southern highbush blueberry (hybrids of Vaccinium corymbosum L. × V. darrowi Camp), rabbiteye blueberry (Vaccinium virgatum L.), and blackberry (Rubus fruticosus L.) production systems. We compared several D. suzukii traps and lures/baits at two sites in Florida. The traps evaluated included Trécé, Scentry, and a standard homemade cup trap. These traps were compared with various baits and lures, including Trécé lure, Scentry lure, yeast bait, and Suzukii trap, under Florida production systems. Early detection is important to develop an effective monitoring system so management action can be taken before economic damage occurs. Data were recorded as overall trends, as well as in 4–5 trapping periods from early to late season. Overall, the Scentry trap baited with Scentry lure, the Trécé trap baited with Trécé lure + yeast, and the Trécé trap baited with Scentry lure were the best performing traps. Yeast-based traps were also attractive to D. suzukii early in the season, but they did not provide consistent captures as the season progressed. The Scentry trap with yeast bait, the Scentry trap with Scentry lure, the Trécé trap with Trécé lure + yeast bait, and a cup trap with yeast bait caught most of the flies during the first trapping period in 2015 and 2016 in the rabbiteye blueberry. In the southern highbush blueberry, the population of D. suzukii was much lower than in the rabbiteye blueberry planting, and the Scentry trap with Scentry lure captured the highest number of flies during the first trapping period in 2016. In the blackberry, the Scentry trap with Scentry lure numerically had the highest captures during the first trapping period, but this was not significantly different from the cup trap with yeast bait, the Trécé trap baited with Suzukii trap, and the Trécé trap with Trécé lure. Overall, the Scentry trap with Scentry lure was the most consistent trap that captured D. suzukii flies throughout the season in the three production systems—rabbiteye blueberry, southern highbush blueberry, and blackberry. Growers in low pressure systems that are similar to Florida can use the Scentry trap with Scentry lure to monitor D. suzukii populations.


Insects ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 508 ◽  
Author(s):  
Stefano Bedini ◽  
Francesca Cosci ◽  
Camilla Tani ◽  
Erika Carla Pierattini ◽  
Francesca Venturi ◽  
...  

The essential oils extracted from mandarin (Citrus reticulata Blanco) fruits, and from tea tree (Maleleuca alternifolia (Maiden and Betche) Cheel) leaves have been chemically analyzed and tested for their bioactivity against D. suzukii. Besides, to estimate consumers’ acceptability of the essential oil (EO) treatments, we evaluated their impact on the organoleptic characteristics of the EO-treated fruits. The main chemical constituents of the two EOs were 1,8-cineole and 4-terpineol for M. alternifolia (22.4% and 17.6% of the total components, respectively), and limonene (83.6% of the total components) for C. reticulata. The behavioral tests indicate that the two EOs are able to deter D. suzukii oviposition and that D. suzukii shows positive chemotaxis to low concentrations of the EOs and negative chemotaxis when the EO concentration increases. While no negative effects on the organoleptic profiles were detected for fruits treated with C. reticulata EO, the olfactory profile of fruits treated with M. alternifolia EO was so negative that they were defined as “not suitable for consumption” by panellists. Overall, our findings indicate that the use of EOs for the post-harvest protection of small fruits is feasible, provided that the essential oils are selected not only for their bioactivity against the insect pest but also for their affinity with the consumers’ sensorial system.


2021 ◽  
Vol 94 (2) ◽  
pp. 251-259
Author(s):  
Charles A. Kwadha ◽  
Louis A. Okwaro ◽  
Isabella Kleman ◽  
Guillermo Rehermann ◽  
Santosh Revadi ◽  
...  

AbstractThe spotted wing drosophila, Drosophila suzukii Matsumura, is an insect pest of soft-skinned fruit, native to Eastern Asia. Since 2008, a world-wide dispersal of D. suzukii is seen, characterized by the establishment of the pest in many Asian, American and European countries. While the potential for invasion of continental Africa by D. suzukii has been predicted, its presence has only been shown for Morocco in Northern Africa. Knowledge about a possible establishment in other parts of the continent is needed as a basis for pest management. In 2019, we carried out a first survey in three counties in Kenya to monitor for the presence of D. suzukii using traps baited with a blend of apple cider vinegar and red wine. A total of 389 D. suzukii flies were captured in a fruit farm at Nakuru county, with more female flies being trapped than males. We confirmed the morphological identification of D. suzukii using DNA barcoding. In 2020, we performed a follow-up survey at 14 locations in six counties to delimit the distribution of D. suzukii in the main berry growing zones in Kenya. The survey indicated that so far D. suzukii is restricted to Nakuru county where it was initially detected. This is the first study to provide empirical evidence of D. suzukii in continental sub-Saharan Africa, confirming that the pest is expanding its geographic range intercontinentally. Given the high dispersal potential of D. suzukii, a concerted effort to develop management strategies is a necessity for containment of the pest.


Insects ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 215 ◽  
Author(s):  
Alina Avanesyan ◽  
William O. Lamp

Spotted lanternfly, Lycorma delicatula (Hemiptera: Fulgoridae), is an introduced highly invasive insect pest in the US that poses a significant risk to forestry and agriculture. Assessing and predicting plant usage of the lanternfly has been challenging, and little is known regarding the lanternfly nymph association with its host plants. In this study, we focused on: (a) providing a protocol for using molecular markers for food plant identification of L. delicatula; (b) determining whether the ingested plant DNA corresponds with DNA of the plants from which the lanternfly was collected; and, (c) investigating the spectrum of ingested plants. We utilized gut contents of third and fourth instar nymphs that were collected from multiple plants; we isolated ingested plant DNA and identified consumed plants. We demonstrated that (a) up to 534 bp of the rbcL gene from ingested plants can be detected in L. delicatula guts, (b) ingested plants in ~93% of the nymphs did not correspond with the plants from which the nymphs were collected, and (c) both introduced and native plants, as well as woody and non-woody plants, were ingested. This information will aid effective the monitoring and management of the lanternfly, as well as predict the lanternfly host plants with range expansion.


Insects ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 53 ◽  
Author(s):  
Francisco Díaz-Fleischer ◽  
José Arredondo ◽  
Rodrigo Lasa ◽  
Carlos Bonilla ◽  
Diana Debernardi ◽  
...  

Polyols are commonly used in food and medicines as sweeteners and preservatives but may also have insecticidal properties against some species of Diptera. Here we compared the insecticidal activity and feeding response of glycerol and propylene glycol (PG) on two tephritids: Anastrepha ludens and Anastrepha obliqua, and the drosophilid Drosophila suzukii. First, flies were exposed to solutions of 50% sucrose and the two polyols at concentrations of 1.67 M, 2.78 M and 4.18 M for 24 h and then observed at 24 h intervals for a period of three days. Both polyols elicited strong regurgitation behavior in the three flies and killed them. Regurgitation apparently also reduced flies’ body weight, and this was particularly apparent in insects that fed on 4.18 M PG solutions. A high percentage of individuals exposed to PG solutions perished after 72 hours. The number of proboscis extensions, which is associated with feeding preference, was lower in the 4.18 M polyols + sucrose mixtures than in the 50% sucrose solution. Glycerol had a lower insecticidal effect in Anastrepha spp. and very little insecticidal effect in D. suzukii. Finally, elevated regurgitation and mortality was confirmed in A. ludens treated with 1.0–2.78 M of erythritol plus sucrose. Our results demonstrate that PG, and to a lower extent glycerol, have the potential for being used as a safer method of insect pest control. The hyper-regurgitation response may contribute to the insecticidal properties of these polyols in Diptera.


2020 ◽  
Vol 113 (3) ◽  
pp. 1097-1104 ◽  
Author(s):  
Marysol Aceituno-Medina ◽  
Alicia Ordoñez ◽  
Morfa Carrasco ◽  
Pablo Montoya ◽  
Emilio Hernández

Abstract The spotted wing drosophila, Drosophila suzukii Matsumura, has emerged as a major invasive insect pest of small and stone fruits in both the Americas and Europe in the last decade. Females oviposit in ripening fruit, and significant economic losses can occur. Control measures are mainly associated with the use of pesticides, but the sterile insect technique (SIT), an ecologically friendly pest-specific method, could be used against this species. The objective of this study was to estimate the mass rearing, quality control parameters, and bioconversion using four artificial larval diets and their economic aspects oriented to the SIT application. Diets were based on the combination of coconut fiber, corncob powder, Brewer’s and Torula yeast and were used as oviposition substrate and larval development. We found that a life cycle is completed in 10.19 ± 0.35 d and that adults live an average of 33.67 ± 0.76 d. The highest number of pupae per gram of diet and the maximum bioconversion (6%) were associated with flies developed in the coconut fiber + Brewer’s yeast diet. Under our conditions, the establishment of D. suzukii required at least four generations. The use of 30 × 40 × 30 cm Plexiglas cages, each loaded with 5,000 adults and stocked with 500 g of coconut fiber and Brewer’s yeast diet distributed in 15 × 5 × 10 cm plastic trays with a diet layer 3-cm thick, allows a minimum production of 84,000 pupae of D. suzukii per day.


Sign in / Sign up

Export Citation Format

Share Document