scholarly journals Modeling cells spreading, motility, and receptors dynamics: a general framework

Author(s):  
Mattia Serpelloni ◽  
Matteo Arricca ◽  
Claudia Bonanno ◽  
Alberto Salvadori

Abstract The response of cells during spreading and motility is dictated by several multi-physics events, which are triggered by extracellular cues and occur at different time-scales. For this sake, it is not completely appropriate to provide a cell with classical notions of the mechanics of materials, as for “rheology” or “mechanical response”. Rather, a cell is an alive system with constituents that show a reproducible response, as for the contractility for single stress fibers or for the mechanical response of a biopolymer actin network, but that reorganize in response to external cues in a non-exactly-predictable and reproducible way. Aware of such complexity, in this note we aim at formulating a multi-physics framework for modeling cells spreading and motility, accounting for the relocation of proteins on advecting lipid membranes. Graphic Abstract We study the mechanical response under compression/extension of an assembly composed of 8 helical rods, pin-jointed and arranged in pairs with opposite chirality. In compression we find that, whereas a single rod buckles (a), the rods of the assembly deform as stable helical shapes (b). We investigate the effect of different boundary conditions and elastic properties on the mechanical response, and find that the deformed geometries exhibit a common central region where rods remain circular helices. Our findings highlight the key role of mutual interactions in the ensemble response and shed some light on the reasons why tubular helical assemblies are so common and persistent.

Author(s):  
Jacopo Quaglierini ◽  
Alessandro Lucantonio ◽  
Antonio DeSimone

Abstract Nature and technology often adopt structures that can be described as tubular helical assemblies. However, the role and mechanisms of these structures remain elusive. In this paper, we study the mechanical response under compression and extension of a tubular assembly composed of 8 helical Kirchhoff rods, arranged in pairs with opposite chirality and connected by pin joints, both analytically and numerically. We first focus on compression and find that, whereas a single helical rod would buckle, the rods of the assembly deform coherently as stable helical shapes wound around a common axis. Moreover, we investigate the response of the assembly under different boundary conditions, highlighting the emergence of a central region where rods remain circular helices. Secondly, we study the effects of different hypotheses on the elastic properties of rods, i.e., stress-free rods when straight versus when circular helices, Kirchhoff’s rod model versus Sadowsky’s ribbon model. Summing up, our findings highlight the key role of mutual interactions in generating a stable ensemble response that preserves the helical shape of the individual rods, as well as some interesting features, and they shed some light on the reasons why helical shapes in tubular assemblies are so common and persistent in nature and technology. Graphic Abstract We study the mechanical response under compression/extension of an assembly composed of 8 helical rods, pin-jointed and arranged in pairs with opposite chirality. In compression we find that, whereas a single rod buckles (a), the rods of the assembly deform as stable helical shapes (b). We investigate the effect of different boundary conditions and elastic properties on the mechanical response, and find that the deformed geometries exhibit a common central region where rods remain circular helices. Our findings highlight the key role of mutual interactions in the ensemble response and shed some light on the reasons why tubular helical assemblies are so common and persistent.


2013 ◽  
Vol 200 (5) ◽  
pp. 619-633 ◽  
Author(s):  
Elena Ingerman ◽  
Jennifer Ying Hsiao ◽  
R. Dyche Mullins

We examined the role of ATP hydrolysis by the Arp2/3 complex in building the leading edge of a cell by studying the effects of hydrolysis defects on the behavior of the complex in the lamellipodial actin network of Drosophila S2 cells and in a reconstituted, in vitro, actin-based motility system. In S2 cells, nonhydrolyzing Arp2 and Arp3 subunits expanded and delayed disassembly of lamellipodial actin networks and the effect of mutant subunits was additive. Arp2 and Arp3 ATP hydrolysis mutants remained in lamellipodial networks longer and traveled greater distances from the plasma membrane, even in networks still containing wild-type Arp2/3 complex. In vitro, wild-type and ATP hydrolysis mutant Arp2/3 complexes each nucleated actin and built similar dendritic networks. However, networks constructed with Arp2/3 hydrolysis-defective mutants were more resistant to disassembly by cofilin. Our results indicate that ATP hydrolysis on both Arp2 and Arp3 contributes to dissociation of the complex from the actin network but is not strictly necessary for lamellipodial network disassembly.


2018 ◽  
Author(s):  
Dayinta L. Perrier ◽  
Afshin Vahid ◽  
Vaishnavi Kathavi ◽  
Lotte Stam ◽  
Lea Rems ◽  
...  

ABSTRACTWe study the role of a biomimetic actin cortex during the application of electric pulses that induce electroporation or electropermeabilization, using giant unilamellar vesicles (GUVs) as a model system. The actin cortex, a subjacently attached interconnected network of actin filaments, regulates the shape and mechanical properties of the plasma membrane of mammalian cells, and is a major factor influencing the mechanical response of the cell to external physical cues. We demonstrate that the presence of an actin shell inhibits the formation of macropores in the electroporated GUVs. Additionally, experiments on the uptake of dye molecules after electroporation show that the actin network slows down the resealing process of the permeabilized membrane. We further analyze the stability of the actin network inside the GUVs exposed to high electric pulses. We find disruption of the actin layer that is likely due to the electrophoretic forces acting on the actin filaments during the permeabilization of the GUVs. Our findings on the GUVs containing a biomimetic cortex provide a step towards understanding the discrepancies between the electroporation mechanism of a living cell and its simplified model of the empty GUV.


2020 ◽  
Vol 16 (34) ◽  
pp. 2853-2861
Author(s):  
Yanli Li ◽  
Rui Yang ◽  
Limo Chen ◽  
Sufang Wu

CD38 is a transmembrane glycoprotein that is widely expressed in a variety of human tissues and cells, especially those in the immune system. CD38 protein was previously considered as a cell activation marker, and today monoclonal antibodies targeting CD38 have witnessed great achievements in multiple myeloma and promoted researchers to conduct research on other tumors. In this review, we provide a wide-ranging review of the biology and function of the human molecule outside the field of myeloma. We focus mainly on current research findings to summarize and update the findings gathered from diverse areas of study. Based on these findings, we attempt to extend the role of CD38 in the context of therapy of solid tumors and expand the role of the molecule from a simple marker to an immunomodulator.


2010 ◽  
Vol 1274 ◽  
Author(s):  
Taher Saif ◽  
Jagannathan Rajagopalan ◽  
Alireza Tofangchi

AbstractWe used high resolution micromechanical force sensors to study the in vivo mechanical response of embryonic Drosophila neurons. Our experiments show that Drosophila axons have a rest tension of a few nN and respond to mechanical forces in a manner characteristic of viscoelastic solids. In response to fast externally applied stretch they show a linear force-deformation response and when the applied stretch is held constant the force in the axons relaxes to a steady state value over time. More importantly, when the tension in the axons is suddenly reduced by releasing the external force the neurons actively restore the tension, sometimes close to their resting value. Along with the recent findings of Siechen et al (Proc. Natl. Acad. Sci. USA 106, 12611 (2009)) showing a link between mechanical tension and synaptic plasticity, our observation of active tension regulation in neurons suggest an important role for mechanical forces in the functioning of neurons in vivo.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yorick Janssens ◽  
Nathan Debunne ◽  
Anton De Spiegeleer ◽  
Evelien Wynendaele ◽  
Marta Planas ◽  
...  

AbstractQuorum sensing peptides (QSPs) are bacterial peptides produced by Gram-positive bacteria to communicate with their peers in a cell-density dependent manner. These peptides do not only act as interbacterial communication signals, but can also have effects on the host. Compelling evidence demonstrates the presence of a gut-brain axis and more specifically, the role of the gut microbiota in microglial functioning. The aim of this study is to investigate microglial activating properties of a selected QSP (PapRIV) which is produced by Bacillus cereus species. PapRIV showed in vitro activating properties of BV-2 microglia cells and was able to cross the in vitro Caco-2 cell model and reach the brain. In vivo peptide presence was also demonstrated in mouse plasma. The peptide caused induction of IL-6, TNFα and ROS expression and increased the fraction of ameboid BV-2 microglia cells in an NF-κB dependent manner. Different metabolites were identified in serum, of which the main metabolite still remained active. PapRIV is thus able to cross the gastro-intestinal tract and the blood–brain barrier and shows in vitro activating properties in BV-2 microglia cells, hereby indicating a potential role of this quorum sensing peptide in gut-brain interaction.


Author(s):  
Luzian Messmer ◽  
Braida Thom ◽  
Pius Kruetli ◽  
Evans Dawoe ◽  
Kebebew Assefa ◽  
...  

AbstractMany regions around the world are experiencing an increase in climate-related shocks, such as drought. This poses serious threats to farming activities and has major implications for sustaining rural livelihoods and food security. Farmers’ ability to respond to and withstand the increasing incidence of drought events needs to be strengthened and their resilience enhanced. Implementation of measures to enhance resilience is determined by decisions of farmers and it is important to understand the reasons behind their behavior. We assessed the viability of measures to enhance resilience of farmers to drought, by developing a general framework that covers economic-technical and psychological-cognitive aspects, here summarized under the terms (1) motivation and (2) feasibility. The conceptual framework was applied to cocoa farmers in Ghana and tef farmers in Ethiopia by using questionnaire-based surveys. A portfolio of five specific measures to build resilience (i.e., irrigation, shade trees, fire belts, bookkeeping, mulching, early mature varieties, weather forecast, reduced tillage, improved harvesting) in each country was evaluated with a closed-ended questionnaire that covered the various aspects of motivation and feasibility whereby farmers were asked to (dis)agree on a 5-point Likert scale. The results show that if the motivation mean score is increased by 0.1 units, the probability of implementation increases by 16.9% in Ghana and by 7.7% in Ethiopia. If the feasibility mean score is increased by 0.1 units, the probability of implementation increases by 24.9% in Ghana and by 11.9% in Ethiopia. We can conclude that motivation and feasibility matter, and we improve our understanding of measure implementation if we include both feasibility and motivation into viability assessments.


2016 ◽  
Vol 6 (2-3) ◽  
pp. 101-108
Author(s):  
Marc Belissa ◽  
Gary Berton

The volume contains six contributions (and an introduction) that have been presented in the Thomas Paine Second International Conference held in Paris Ouest Nanterre in 2014. All scholars involved in the field of research of Atlantic history agree on the fact that the partitioning between ‘national’ historiographies (American, English and French) is detrimental in the understanding of the role of specific transatlantic actors, of which Thomas Paine is one the most spectacular example for the era of the revolutions (1760–1830). This conference gathered American, British and French historians to develop this fruitful approach. The papers presented here participate in the historiographic opening up of studies on Thomas Paine and propose studies, reflexion and specific comments on how Thomas Paine converges within the general framework of Atlantic history and Republicanism history.


Sign in / Sign up

Export Citation Format

Share Document