scholarly journals A sparse FFT approach for ODE with random coefficients

2020 ◽  
Vol 46 (5) ◽  
Author(s):  
Maximilian Bochmann ◽  
Lutz Kämmerer ◽  
Daniel Potts

Abstract The paper presents a general strategy to solve ordinary differential equations (ODE), where some coefficient depend on the spatial variable and on additional random variables. The approach is based on the application of a recently developed dimension-incremental sparse fast Fourier transform. Since such algorithms require periodic signals, we discuss periodization strategies and associated necessary deperiodization modifications within the occurring solution steps. The computed approximate solutions of the ODE depend on the spatial variable and on the random variables as well. Certainly, one of the crucial challenges of the high-dimensional approximation process is to rate the influence of each variable on the solution as well as the determination of the relations and couplings within the set of variables. The suggested approach meets these challenges in a full automatic manner with reasonable computational costs, i.e., in contrast to already existing approaches, one does not need to seriously restrict the used set of ansatz functions in advance.

Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 534
Author(s):  
F. Thomas Bruss

This paper presents two-person games involving optimal stopping. As far as we are aware, the type of problems we study are new. We confine our interest to such games in discrete time. Two players are to chose, with randomised choice-priority, between two games G1 and G2. Each game consists of two parts with well-defined targets. Each part consists of a sequence of random variables which determines when the decisive part of the game will begin. In each game, the horizon is bounded, and if the two parts are not finished within the horizon, the game is lost by definition. Otherwise the decisive part begins, on which each player is entitled to apply their or her strategy to reach the second target. If only one player achieves the two targets, this player is the winner. If both win or both lose, the outcome is seen as “deuce”. We motivate the interest of such problems in the context of real-world problems. A few representative problems are solved in detail. The main objective of this article is to serve as a preliminary manual to guide through possible approaches and to discuss under which circumstances we can obtain solutions, or approximate solutions.


Author(s):  
Mina Ketan Mahanti ◽  
Amandeep Singh ◽  
Lokanath Sahoo

We have proved here that the expected number of real zeros of a random hyperbolic polynomial of the formy=Pnt=n1a1cosh⁡t+n2a2cosh⁡2t+⋯+nnancosh⁡nt, wherea1,…,anis a sequence of standard Gaussian random variables, isn/2+op(1). It is shown that the asymptotic value of expected number of times the polynomial crosses the levely=Kis alson/2as long asKdoes not exceed2neμ(n), whereμ(n)=o(n). The number of oscillations ofPn(t)abouty=Kwill be less thann/2asymptotically only ifK=2neμ(n), whereμ(n)=O(n)orn-1μ(n)→∞. In the former case the number of oscillations continues to be a fraction ofnand decreases with the increase in value ofμ(n). In the latter case, the number of oscillations reduces toop(n)and almost no trace of the curve is expected to be present above the levely=Kifμ(n)/(nlogn)→∞.


2016 ◽  
Author(s):  
Michael Maraun ◽  
Moritz Heene

There has come to exist within the psychometric literature a generalized belief to the effect that a determination of the level of factorial invariance that holds over a set of k populations Δj, j = 1..s, is central to ascertaining whether or not the common factor random variables ξj, j = 1..s, are equivalent. In the current manuscript, a technical examination of this belief is undertaken. The chief conclusion of the work is that, as long as technical, statistical senses of random variable equivalence are adhered to, the belief is unfounded.


2018 ◽  
Author(s):  
Robert B. Quast ◽  
Fataneh Fatemi ◽  
Michel Kranendonk ◽  
Emmanuel Margeat ◽  
Gilles Truan

ABSTRACTConjugation of fluorescent dyes to proteins - a prerequisite for the study of conformational dynamics by single molecule Förster resonance energy transfer (smFRET) - can lead to substantial changes of the dye’s photophysical properties, ultimately biasing the quantitative determination of inter-dye distances. In particular the popular cyanine dyes and their derivatives, which are by far the most used dyes in smFRET experiments, exhibit such behavior. To overcome this, a general strategy to site-specifically equip proteins with FRET pairs by chemo-selective reactions using two distinct non-canonical amino acids simultaneously incorporated through genetic code expansion in Escherichia coli was developed. Applied to human NADPH- cytochrome P450 reductase (CPR), the importance of homogenously labeled samples for accurate determination of FRET efficiencies was demonstrated. Furthermore, the effect of NADP+ on the ionic strength dependent modulation of the conformational equilibrium of CPR was unveiled. Given its generality and accuracy, the presented methodology establishes a new benchmark to decipher complex molecular dynamics on single molecules.


Author(s):  
Ali Sadollah ◽  
Joong Hoon Kim

In this chapter, a general strategy is recommended to solve variety of linear and nonlinear ordinary differential equations (ODEs) with boundary value conditions. With the aid of certain fundamental concepts of mathematics, Fourier series expansion, and metaheuristic algorithms, ODEs can be represented as an optimization problem. The purpose is to reduce the weighted residual error (error function) of the ODEs. Boundary values of ODEs are considered as constraints for the optimization model. Inverted generational distance metric is utilized for evaluation and assessment of approximate solutions versus exact solutions. Four ODEs having different orders and features are approximately solved and compared with their exact solutions. The optimization task is carried out using different optimizers including the particle swarm optimization and the water cycle algorithm. The optimization results obtained show that the proposed method equipped with metaheuristic algorithms can be successfully applied for approximate solving of different types of ODEs.


Author(s):  
Akram Nikfetrat ◽  
Reza Mahboobi Esfanjani

A self-tuning Kalman filter is introduced to reduce the destructive effects of the delayed and lost measurements in the guidance systems employing command to line-of-sight strategy. A sequence of Bernoulli distributed random variables with uncertain probabilities are used to model the delayed and lost observations. Besides the state estimation, the uncertain parameters of the measurement model are identified online using the covariance of innovation sequence. Simulation results are given to demonstrate the merits of the suggested approach.


1993 ◽  
Vol 115 (4) ◽  
pp. 771-780 ◽  
Author(s):  
M. P. Mignolet ◽  
C.-C. Lin

A two-step method is presented for the determination of reliable approximations of the probability density function of the forced response of a randomly mistuned bladed disk. Under the assumption of linearity, an integral representation of the probability density function of the blade amplitude is first derived. Then, deterministic perturbation techniques are employed to produce simple approximations of this function. The adequacy of the method is demonstrated by comparing several approximate solutions with simulation results.


1979 ◽  
Vol 11 (03) ◽  
pp. 591-602
Author(s):  
David Mannion

We showed in [2] that if an object of initial size x (x large) is subjected to a succession of random partitions, then the object is decomposed into a large number of terminal cells, each of relatively small size, where if Z(x, B) denotes the number of such cells whose sizes are points in the set B, then there exists c, (0 < ≦ 1), such that Z(x, B)x −c converges in probability, as x → ∞, to a random variable W. We show here that if a parent object of size x produces k offspring of sizes y 1, y 2, ···, y k and if for each k x - y 1 - y 2 - ··· - y k (the ‘waste’ or the ‘cover’, depending on the point of view) is relatively small, then for each n the nth cumulant, Ψ n (x, B), of Z(x, B) satisfies Ψ n (x, B)x -c → κ n (B), as x → ∞, for some κ n (B). Thus, writing N = x c , Z(x, B) has approximately the same distribution as the sum of N independent and identically distributed random variables (The determination of the distribution of the individual appears to be a difficult problem.) The theory also applies when an object of moderate size is broken down into very fine particles or granules.


1971 ◽  
Vol 2 (4) ◽  
pp. 35
Author(s):  
B.M. Haines ◽  
D.W. Emerson ◽  
M.J. Smith

Hydrogeological evaluation of subsurface aquifers involves measurement of electrolyte resistivity and subsequent determination of solution salinity. Resistivity of the water may be evaluated by quantitative interpretation of electrical well logs or by direct measurement on recovered samples. Determination of a reliable relationship between electrolyte resistivity and salinity presents a more difficult problem. Approximate solutions have been attempted frequently on theoretical and experimental bases. An empirical relationship derived from previously collected data provides the most satisfactory solution for any particular situation (be it region, valley, basin or aquifer).


Sign in / Sign up

Export Citation Format

Share Document