Laboratory measurements of methane desorption behavior on coal under different modes of real-time microwave loading

Adsorption ◽  
2019 ◽  
Vol 26 (1) ◽  
pp. 61-73 ◽  
Author(s):  
Zhijun Wang ◽  
Xiaojuan Wang ◽  
Xiaotong Ma ◽  
Xianming Li ◽  
Zhiguan Zhu
2021 ◽  
pp. 155335062110314
Author(s):  
Mario V. Roser ◽  
Alexander H. R. Frank ◽  
Lea Henrichs ◽  
Christian Heiliger ◽  
Dorian Andrade ◽  
...  

Background: For centuries, surgeons have relied on surgical drains during postoperative care. Despite all advances in modern medicine and the area of digitalization, as of today, most if not all assessment of abdominal secretions excreted via surgical drains are carried out manually. We here introduce a novel integrated Smart Sensor System ( Smart Drain) that allows for real-time characterization and digitalization of postoperative abdominal drain output at the patient’s bedside. Methods: A prototype of the Smart Drain was developed using a sophisticated spectrometer for assessment of drain output. The prototype measures 10 × 6 × 6 cm and therefore easily fits at the bedside. At the time of measurement with our Smart Drain, the drain output was additionally sent off to be analyzed in our routine laboratory for typical markers of interest in abdominal surgery such as bilirubin, lipase, amylase, triglycerides, urea, protein, and red blood cells. A total of 45 samples from 19 patients were included. Results: The measurements generated were found to correlate with conventional laboratory measurements for bilirubin (r = .658, P = .000), lipase (r = .490, P = .002), amylase (r = .571, P = .000), triglycerides (r = .803, P = .000), urea (r = .326, P = .033), protein (r = .387, P = .012), and red blood cells (r = .904, P = .000). Conclusions: To our best knowledge, for the first time we describe a device using a sophisticated spectrometer that allows for real-time characterization and digitalization of postoperative abdominal drain output at the patient’s bedside.


Frequenz ◽  
2013 ◽  
Vol 67 (5-6) ◽  
Author(s):  
Vladimir D. Orlic ◽  
Miroslav Peric ◽  
Aleksej Makarov

SPE Journal ◽  
2010 ◽  
Vol 16 (01) ◽  
pp. 115-124 ◽  
Author(s):  
Julian Y. Zuo ◽  
Dan Zhang ◽  
Francois Dubost ◽  
Chengli Dong ◽  
Oliver C. Mullins ◽  
...  

Summary Downhole fluid analysis (DFA), together with focused-sampling techniques and wireline-formation-tester (WFT) tools, provides real-time measurements of reservoir-fluid properties such as the compositions of four or five hydrocarbon components/groups and gas/oil ratio (GOR). With the introduction of a new generation of DFA tools that analyze fluids at downhole conditions, the accuracy and reliability of the DFA measurements are improved significantly. Furthermore, downhole measurements of live-fluid densities are integrated into the new tools. Direct pressure and temperature measurements of the flowline ensure capture of accurate fluid conditions. To enhance these advanced features further, a new method of downhole fluid characterization based on the equation-of-state (EOS) approach is proposed in this work. The motivation for this work is to develop a new approach to maximize the value of DFA data, perform quality assurance or quality control of DFA data, and establish a fluid model for DFA log predictions along with DFA fluid profiling. The basic inputs from DFA measurements are weight percentages of CO2, C1, C2, C3–C5 and C6+, along with live-fluid density and viscosity. A new method was developed in this work to delump and characterize the DFA measurements of C3–C5 (or C2–C5) and C6+ into full-length compositional data. The full-length compositional data predicted by the new method were compared with the laboratory-measured gas chromatograph data up to C30+ for more than 1,000 fluids, including heavy oil, conventional black oil, volatile oil, rich gas condensate, lean gas condensate, and wet gas. These fluids have a GOR range of 8–140,000 scf/STB and a gravity range from 9 to 50°API. A good agreement was achieved between the delumped and gas-chromatograph compositions. In addition, on the basis of the delumped and characterized full-length compositional data, EOS models were established that can be applied to predict fluid-phase behavior and physical properties by virtue of DFA data as inputs. The EOS predictions were validated and compared with the laboratory-measured pressure/volume/temperature (PVT) properties for more than 1,000 fluids. The GOR, formation-volume factor, density, and viscosity predictions were in good agreement with the laboratory measurements. The established EOS model then was able to predict other PVT properties, and the results were compared with the laboratory measurements in good agreement. Consequently, the established EOS models have laid a solid foundation for DFA log predictions in DFA fluid profiling, which has been integrated successfully with DFA measurements in real time to delineate compositional and asphaltene gradients in oil columns and to determine reservoir connectivity. The latter results are beyond the scope of this work and have been given in separate technical papers.


1979 ◽  
Vol 44 ◽  
pp. 41-47
Author(s):  
Donald A. Landman

This paper describes some recent results of our quiescent prominence spectrometry program at the Mees Solar Observatory on Haleakala. The observations were made with the 25 cm coronagraph/coudé spectrograph system using a silicon vidicon detector. This detector consists of 500 contiguous channels covering approximately 6 or 80 Å, depending on the grating used. The instrument is interfaced to the Observatory’s PDP 11/45 computer system, and has the important advantages of wide spectral response, linearity and signal-averaging with real-time display. Its principal drawback is the relatively small target size. For the present work, the aperture was about 3″ × 5″. Absolute intensity calibrations were made by measuring quiet regions near sun center.


Author(s):  
Alan S. Rudolph ◽  
Ronald R. Price

We have employed cryoelectron microscopy to visualize events that occur during the freeze-drying of artificial membranes by employing real time video capture techniques. Artificial membranes or liposomes which are spherical structures within internal aqueous space are stabilized by water which provides the driving force for spontaneous self-assembly of these structures. Previous assays of damage to these structures which are induced by freeze drying reveal that the two principal deleterious events that occur are 1) fusion of liposomes and 2) leakage of contents trapped within the liposome [1]. In the past the only way to access these events was to examine the liposomes following the dehydration event. This technique allows the event to be monitored in real time as the liposomes destabilize and as water is sublimed at cryo temperatures in the vacuum of the microscope. The method by which liposomes are compromised by freeze-drying are largely unknown. This technique has shown that cryo-protectants such as glycerol and carbohydrates are able to maintain liposomal structure throughout the drying process.


Author(s):  
R.P. Goehner ◽  
W.T. Hatfield ◽  
Prakash Rao

Computer programs are now available in various laboratories for the indexing and simulation of transmission electron diffraction patterns. Although these programs address themselves to the solution of various aspects of the indexing and simulation process, the ultimate goal is to perform real time diffraction pattern analysis directly off of the imaging screen of the transmission electron microscope. The program to be described in this paper represents one step prior to real time analysis. It involves the combination of two programs, described in an earlier paper(l), into a single program for use on an interactive basis with a minicomputer. In our case, the minicomputer is an INTERDATA 70 equipped with a Tektronix 4010-1 graphical display terminal and hard copy unit.A simplified flow diagram of the combined program, written in Fortran IV, is shown in Figure 1. It consists of two programs INDEX and TEDP which index and simulate electron diffraction patterns respectively. The user has the option of choosing either the indexing or simulating aspects of the combined program.


Sign in / Sign up

Export Citation Format

Share Document