scholarly journals Rapid optimization of drug combinations for the optimal angiostatic treatment of cancer

Angiogenesis ◽  
2015 ◽  
Vol 18 (3) ◽  
pp. 233-244 ◽  
Author(s):  
Andrea Weiss ◽  
Xianting Ding ◽  
Judy R. van Beijnum ◽  
Ieong Wong ◽  
Tse J. Wong ◽  
...  

Abstract Drug combinations can improve angiostatic cancer treatment efficacy and enable the reduction of side effects and drug resistance. Combining drugs is non-trivial due to the high number of possibilities. We applied a feedback system control (FSC) technique with a population-based stochastic search algorithm to navigate through the large parametric space of nine angiostatic drugs at four concentrations to identify optimal low-dose drug combinations. This implied an iterative approach of in vitro testing of endothelial cell viability and algorithm-based analysis. The optimal synergistic drug combination, containing erlotinib, BEZ-235 and RAPTA-C, was reached in a small number of iterations. Final drug combinations showed enhanced endothelial cell specificity and synergistically inhibited proliferation (p < 0.001), but not migration of endothelial cells, and forced enhanced numbers of endothelial cells to undergo apoptosis (p < 0.01). Successful translation of this drug combination was achieved in two preclinical in vivo tumor models. Tumor growth was inhibited synergistically and significantly (p < 0.05 and p < 0.01, respectively) using reduced drug doses as compared to optimal single-drug concentrations. At the applied conditions, single-drug monotherapies had no or negligible activity in these models. We suggest that FSC can be used for rapid identification of effective, reduced dose, multi-drug combinations for the treatment of cancer and other diseases.

2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Ha-Rim Seo ◽  
Hyo Eun Jeong ◽  
Hyung Joon Joo ◽  
Seung-Cheol Choi ◽  
Jong-Ho Kim ◽  
...  

Background: Human body contains many kinds of different type of endothelial cells (EC). However, cellular difference of their angiogenic potential has been hardly understood. We compared in vitro angiogenic potential between arterial EC and venous EC and investigated its underlying molecular mechanisms. Method: Used human aortic endothelial cells (HAEC) which was indicated from arterial EC and human umbilical vein endothelial cells (HUVEC) indicated from venous EC. To explore angiogenic potential in detail, we adopted a novel 3D microfluidic angiogenesis assay system, which closely mimic in vivo angiogenesis. Results: In 3D microfluidic angiogenesis assay system, HAEC demonstrated stronger angiogenic potential compared to HUVEC. HAEC maintained its profound angiogenic property under different biophysical conditions. In mRNA microarray sorted on up- regulated or down-regulated genes, HAEC demonstrated significantly higher expression of gastrulation brain homeobox 2 (GBX2), fibroblast grow factor 2 (FGF2), FGF5 and collagen 8a1. Angiogenesis-related protein assay revealed that HAEC has higher secretion of endogenous FGF2 than HUVEC. HAEC has only up-regulated FGF2 and FGF5 in this part of FGF family. Furthermore, FGF5 expression under vascular endothelial growth factor-A (VEGF-A) stimulation was higher in HAEC compared to HUVEC although VEGF-A augmented FGF5 expression in both HAEC and HUVEC. Those data suggested that FGF5 expression in both HAEC and HUVEC is partially dependent to VEGF-A stimulate. HUVEC and HAEC reduced vascular density after FGF2 and FGF5 siRNA treat. Conclusion: HAEC has stronger angiogenic potential than HUVEC through up-regulation of endogenous FGF2 and FGF5 expression


2012 ◽  
Vol 32 (suppl_1) ◽  
Author(s):  
Ishita Chatterjee ◽  
Kishore K Wary

Rationale: A recent genome-wide association study (GWAS) has linked a frequently occurring variation in the LPP3 (also known as PPAP2b) loci to increased risk of coronary heart disease (CAD). However, the in vivo function of LPP3 in vascular endothelial cell is incompletely understood. Goal: To address the endothelial cell (EC) specific function of Lpp3 in mice. Results: Tie-2/Cre mediated Lpp3 deletion did not affect normal vasculogenesis in early embryonic development, in contrast, in late embryonic stages it led to impaired angiogenesis associated with hemorrhage, edema and late embryonic lethal phenotype. Immunohistochemical staining followed by microscopic analyses of mutant embryos revealed reduced fibronectin and VE-cadherin expression throughout different vascular bed, and increased apoptosis in CD31+ vascular structures. Transmission electron microscopy (TEM) showed the presence of apoptotic endothelial cells and disruption of adherens junctions in mutant embryos. LPP3-knockdown in vitro showed an increase in p53 and p21 protein levels, with concomitant decrease in cell proliferation. LPP3-knockdown also decreased transendothelial electrical resistance (TER), interestingly re-expression of ß-catenin cDNA into LPP3-depleted endothelial cells partially restored the effect of loss of LPP3. Conclusion: These results suggest the ability of LPP3 to regulate survival and apoptotic activities of endothelial cells during patho/physiological angiogenesis.


2000 ◽  
Vol 113 (1) ◽  
pp. 59-69 ◽  
Author(s):  
M.F. Carlevaro ◽  
S. Cermelli ◽  
R. Cancedda ◽  
F. Descalzi Cancedda

Vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) induces endothelial cell migration and proliferation in culture and is strongly angiogenic in vivo. VEGF synthesis has been shown to occur in both normal and transformed cells. The receptors for the factor have been shown to be localized mainly in endothelial cells, however, the presence of VEGF synthesis and the VEGF receptor in cells other than endothelial cells has been demonstrated. Neoangiogenesis in cartilage growth plate plays a fundamental role in endochondral ossification. We have shown that, in an avian in vitro system for chondrocyte differentiation, VEGF was produced and localized in cell clusters totally resembling in vivo cartilage. The factor was synthesized by hypertrophic chondrocytes and was released into their conditioned medium, which is highly chemotactic for endothelial cells. Antibodies against VEGF inhibited endothelial cell migration induced by chondrocyte conditioned media. Similarly, endothelial cell migration was inhibited also by antibodies directed against the VEGF receptor 2/Flk1 (VEGFR2). In avian and mammalian embryo long bones, immediately before vascular invasion, VEGF was distinctly localized in growth plate hypertrophic chondrocytes. In contrast, VEGF was not observed in quiescent and proliferating chondrocytes earlier in development. VEGF receptor 2 colocalized with the factor both in hypertrophic cartilage in vivo and hypertrophic cartilage engineered in vitro, suggesting an autocrine loop in chondrocytes at the time of their maturation to hypertrophic cells and of cartilage erosion. Regardless of cell exposure to exogenous VEGF, VEGFR-2 phosphorylation was recognized in cultured hypertrophic chondrocytes, supporting the idea of an autocrine functional activation of signal transduction in this non-endothelial cell type as a consequence of the endogenous VEGF production. In summary we propose that VEGF is actively responsible for hypertrophic cartilage neovascularization through a paracrine release by chondrocytes, with invading endothelial cells as a target. Furthermore, VEGF receptor localization and signal transduction in chondrocytes strongly support the hypothesis of a VEGF autocrine activity also in morphogenesis and differentiation of a mesoderm derived cell.


Vaccines ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 70 ◽  
Author(s):  
Gerna ◽  
Kabanova ◽  
Lilleri

In the 1970s–1980s, a striking increase in the number of disseminated human cytomegalovirus (HCMV) infections occurred in immunosuppressed patient populations. Autopsy findings documented the in vivo disseminated infection (besides fibroblasts) of epithelial cells, endothelial cells, and polymorphonuclear leukocytes. As a result, multiple diagnostic assays, such as quantification of HCMV antigenemia (pp65), viremia (infectious virus), and DNAemia (HCMV DNA) in patient blood, were developed. In vitro experiments showed that only low passage or endothelial cell-passaged clinical isolates, and not laboratory-adapted strains, could reproduce both HCMV leuko- and endothelial cell-tropism, which were found through genetic analysis to require the three viral genes UL128, UL130, and UL131 of the HCMV UL128 locus (UL128L). Products of this locus, together with gH/gL, were shown to form the gH/gL/pUL128L pentamer complex (PC) required for infection of epithelial cells/endothelial cells, whereas gH/gL and gO form the gH/gL/gO trimer complex (TC) required for infection of all cell types. In 2016, following previous work, a receptor for the TC that mediates entry into fibroblasts was identified as PDGFRα, while in 2018, a receptor for the PC that mediates entry into endothelial/epithelial cells was identified as neuropilin2 (Nrp2). Furthermore, the olfactory receptor family member OR14I1 was recently identified as a possible additional receptor for the PC in epithelial cells. Thus, current data support two models of viral entry: (i) in fibroblasts, following interaction of PDGFRα with TC, the latter activates gB to fuse the virus envelope with the cell membrane, whereas (ii) in epithelial cells/endothelial cells, interaction of Nrp2 (and OR14I1) with PC promotes endocytosis of virus particles, followed by gB activation by gH/gL/gO (or gH/gL) and final low-pH entry into the cell.


2019 ◽  
Vol 31 (1) ◽  
pp. 118-138 ◽  
Author(s):  
Sébastien J. Dumas ◽  
Elda Meta ◽  
Mila Borri ◽  
Jermaine Goveia ◽  
Katerina Rohlenova ◽  
...  

BackgroundRenal endothelial cells from glomerular, cortical, and medullary kidney compartments are exposed to different microenvironmental conditions and support specific kidney processes. However, the heterogeneous phenotypes of these cells remain incompletely inventoried. Osmotic homeostasis is vitally important for regulating cell volume and function, and in mammals, osmotic equilibrium is regulated through the countercurrent system in the renal medulla, where water exchange through endothelium occurs against an osmotic pressure gradient. Dehydration exposes medullary renal endothelial cells to extreme hyperosmolarity, and how these cells adapt to and survive in this hypertonic milieu is unknown.MethodsWe inventoried renal endothelial cell heterogeneity by single-cell RNA sequencing >40,000 mouse renal endothelial cells, and studied transcriptome changes during osmotic adaptation upon water deprivation. We validated our findings by immunostaining and functionally by targeting oxidative phosphorylation in a hyperosmolarity model in vitro and in dehydrated mice in vivo.ResultsWe identified 24 renal endothelial cell phenotypes (of which eight were novel), highlighting extensive heterogeneity of these cells between and within the cortex, glomeruli, and medulla. In response to dehydration and hypertonicity, medullary renal endothelial cells upregulated the expression of genes involved in the hypoxia response, glycolysis, and—surprisingly—oxidative phosphorylation. Endothelial cells increased oxygen consumption when exposed to hyperosmolarity, whereas blocking oxidative phosphorylation compromised endothelial cell viability during hyperosmotic stress and impaired urine concentration during dehydration.ConclusionsThis study provides a high-resolution atlas of the renal endothelium and highlights extensive renal endothelial cell phenotypic heterogeneity, as well as a previously unrecognized role of oxidative phosphorylation in the metabolic adaptation of medullary renal endothelial cells to water deprivation.


Blood ◽  
1994 ◽  
Vol 83 (11) ◽  
pp. 3206-3217 ◽  
Author(s):  
N Dubois-Stringfellow ◽  
A Jonczyk ◽  
VL Bautch

Abstract Fibrinolytic activity and its relation to morphogenesis was investigated in several transformed murine endothelial cell lines and primary cultures of endothelial cells. Two in vitro systems, fibrin gels and Matrigel (Collaborative Research, Bedford, MA), were used. Fibrin gels model a fibrin-rich extracellular matrix that frequently supports neovascularization in vivo, and Matrigel models the basement membrane surrounding quiescent endothelial cells in vivo. The transformed endothelial cell lines have higher levels of plasminogen activator (PA) mRNA than primary cultures of endothelial cells, and an increased PA-mediated proteolytic activity was correlated with formation of cysts in fibrin gels. Addition of neutralizing anti- urokinase antibodies, plasminogen depletion, or addition of a plasmin inhibitor prevented cyst formation. Addition of plasminogen restored the ability to form cysts in the plasminogen-depleted system. Normal endothelial cells organized into capillary-like structures in fibrin gels regardless of manipulations affecting the fibrinolytic pathway. In Matrigel, both transformed and primary cultures of endothelial cells rapidly formed a capillary-like network that was not affected by plasminogen depletion or addition of plasmin inhibitors. Thus, elements of the fibrinolytic pathway necessary for cyst formation are not critical in capillary-like structure formation on a reconstituted basement membrane. These results suggest that plasmin is essential for hemangioma formation but is not critical to the organizational behavior of normal endothelial cells.


2020 ◽  
pp. jcs.248237
Author(s):  
Zhenguo Yang ◽  
Shuilong Wu ◽  
Federica Fontana ◽  
Yanyu Li ◽  
Wei Xiao ◽  
...  

Steinberg's differential adhesion hypothesis suggests that adhesive mechanisms are important for sorting of cells and tissues during morphogenesis (Steinberg, 2007). During zebrafish vasculogenesis, endothelial cells sort into arterial and venous vessel beds but it is unknown whether this involves adhesive mechanisms. Claudins are tight junction proteins regulating the permeability of epithelial and endothelial tissue barriers. Previously, the roles of Claudins during organ development have exclusively been related to their canonical functions in determining paracellular permeability. Here, we use atomic force microscopy to quantify Claudin-5-dependent adhesion and find that this strongly contributes to the adhesive forces between arterial endothelial cells. Based on genetic manipulations, we reveal a non-canonical role of Claudin-5a during zebrafish vasculogenesis, which involves the regulation of adhesive forces between adjacent dorsal aortic endothelial cells. In vitro and in vivo studies demonstrate that loss of Claudin-5 results in increased motility of dorsal aorta endothelial cells and in a failure of the dorsal aorta to lumenize. Our findings uncover a novel role of Claudin-5 in limiting arterial endothelial cell motility, which goes beyond its traditional sealing function during embryonic development.


Blood ◽  
2010 ◽  
Vol 115 (20) ◽  
pp. 4130-4137 ◽  
Author(s):  
Jinmin Gao ◽  
Lei Sun ◽  
Lihong Huo ◽  
Min Liu ◽  
Dengwen Li ◽  
...  

Cylindromatosis (CYLD) is a deubiquitinase that was initially identified as a tumor suppressor and has recently been implicated in diverse normal physiologic processes. In this study, we have investigated the involvement of CYLD in angiogenesis, the formation of new blood vessels from preexisting ones. We find that knockdown of CYLD expression significantly impairs angiogenesis in vitro in both matrigel-based tube formation assay and collagen-based 3-dimensional capillary sprouting assay. Disruption of CYLD also remarkably inhibits angiogenic response in vivo, as evidenced by diminished blood vessel growth into the angioreactors implanted in mice. Mechanistic studies show that CYLD regulates angiogenesis by mediating the spreading and migration of vascular endothelial cells. Silencing of CYLD dramatically decreases microtubule dynamics in endothelial cells and inhibits endothelial cell migration by blocking the polarization process. Furthermore, we identify Rac1 activation as an important factor contributing to the action of CYLD in regulating endothelial cell migration and angiogenesis. Our findings thus uncover a previously unrecognized role for CYLD in the angiogenic process and provide a novel mechanism for Rac1 activation during endothelial cell migration and angiogenesis.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 693-693
Author(s):  
Katherine L. Hill ◽  
Petra Obrtlikova ◽  
Diego F Alvarez ◽  
Judy A King ◽  
Qinglu Li ◽  
...  

Abstract The field of vascular regenerative medicine is rapidly growing and the demand for cell-based therapy is high. In our studies, human embryonic stem cells (hESCs) were differentiated via coculture with M2-10B4 mouse bone marrow derived stromal cells for 13–15 days. At this time, CD34+ were isolated using an immunomagnetic separation technique and further phenotyped. As shown by flow cytometric analysis, the population co-expressed typical endothelial cell surface antigens such as CD31 and Flk. Upon culture of these CD34+ cells in endothelial culture medium containing VEGF, bFGF, IGF-1, EGF, and heparin, the cells assumed a endothelial cell morphology, formed vascular like networks when placed in Matrigel, and expressed CD31, Flk1, CD146, Tie2, eNOS, vWF, and VE-cadherin (each confirmed by quantitative real time PCR, immunohistochemistry, and flow cytometry). Transmission electron micrograph images of these cells, termed hESC-ECs, showed a defined cortical filamentous rim as seen in other endothelial cells and a significant number of micro-particles being released from the cell surface. Additionally, permeability studies revealed these cells exhibit trans-electrical resistance of 1200Ω, consistent with basal barrier properties exhibited by conduit endothelial cells. These hESC-ECs also proved capable of further differentiation into smooth muscle cells, hESCSMCs. When culture conditions were changed to support SMC growth (DMEM + PDGFBB and TGF-β1), cells assumed SMC morphology including intracellular fibrils, down regulated endothelial gene transcript and protein expression, and began to express α-SMC actin, calponin, SM22, smoothelin, myocardin. Also, concomitant increases in expression of APEG-1 and CRP2/SmLIM, expressed preferentially by arterial SMCs, was found. In contrast, HUVECs placed under these SMC conditions did not display SMC characteristics. Additional studies evaluated intracellular calcium release in hESC-ECs and hESC-SMCs subjected to various pharmacological agonists. The hESC-SMC population preferentially responded to bradykinin, oxytocin, endothelin-1, histamine, and ATP, while hESC-ECs responsed to endothelin-1, histamine, bradykinin, and carbachol. Functional studies were initially done by in vitro culture of these cell populations in Matrigel. hESC-SMCs placed in Matrigel alone did not form a vascular like network. However, an improved vascular structure was seen when hESC-ECs were placed in Matrigel along with hESC-SMCs. Together, these cells formed a dense, more robust vascular network composed of thicker tube structures, indicating a more physiologically relevant model of vasculogenesis. Next in vivo studies have been initiated utilizing a mouse myocardial infarct model. NOD/SCID mice were anesthetized and subjected to ligation of the left anterior descending artery. By assessing cardiac function 3 weeks post infarction, we found that mice receiving an hESC-EC injection (1×106 cells directly into infarction sight) showed greater vascular repair and increased ejection fraction when compared to mice that did not receive an hESCEC injection [untreated control ejection fraction= 14.3% vs hESC-EC treated= 21.3%]. Currently, studies are underway evaluating combined use of hESC-ECs and hESC-SMCs in this infarct model, as we hypothesize that combined use of these cells will be more beneficial for vascular development and repair than either one population alone. Together, the phenotypic and functional studies of these hESC-derived CD34+ cells suggest these cells can act as pericytes with dual endothelial cell and SMC developmental potential and these hESC-derived pericytes can provide an important resource for developing novel cellular therapies for vascular repair.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 992-992
Author(s):  
Chanchal Sur Chowdhury ◽  
Elizabeth Wareham ◽  
Juying Xu ◽  
Sachin Kumar ◽  
Ashwini S. Hinge ◽  
...  

Abstract Neutrophils traffic in and out of underlying vascular bed during hematopoiesis and immunosurveillance. However, during inflammatory conditions such as ischemia reperfusion injury or atherosclerosis, excessive neutrophil infiltration into tissue drives disease pathogenesis. Yet, the relationship between neutrophil transmigration and inflammation is ill-defined. Neutrophil extravasation can occur either between two endothelial cells (paracellular) or directly through an endothelial cell body (transcellular). During transcellular migration, neutrophils interact with underlying endothelial cells (EC) via invadosomal structures, which forms a 'pore' into endothelial cell membrane, thus facilitating neutrophil migration through EC body. We have recently reported that deficiency in Rap1b, a member of Ras superfamily of GTPase, enhanced neutrophil transcellular migration, invadosomal structures and metalloproteinase (MMP) release (Kumar et al, JEM, 2014), in a manner dependent on high Akt activity. Further, Rap1-deficiency increased neutrophil recruitment to inflamed lungs and enhanced susceptibility to endotoxin shock, suggesting mode of neutrophil migration may influence inflammatory outcome. Here, to further understand which factors drive neutrophil transcellular migration, we analyzed protein content of Rap1b-/- invadosomal structures during transcellular diapedesis. For this, neutrophils were stimulated in transwell filters of 1µM pore size, with FMLP placed in the lower chamber, allowing only invadosomal protrusions into the pores. After removing the cell body from top of the filter, mass spectrometric analysis was performed on the invadosomal fraction. About 680 proteins were identified in protrusions isolated from WT or Rap1b-/- neutrophils. As expected, majority of them were cytoskeleton and adhesion proteins. Interestingly, Rap1b-/- invadosomal structures contained more enzymes of glycolytic pathways, including HK1, Lactate dehydrogenase A (LDHA) and phosphoglycerate kinase1 (PGK1). Immunofluorescent staining and western blotting confirmed this observation. Importantly, glycolytic enzymes were present at the tip of the protrusions in colocalization with F-actin suggesting site specific glycolytic activity, raising the hypothesis that metabolic remodeling may influence the route of neutrophil migration. LDHA converts pyruvate to lactate and subsequent milieu acidification, which can then cause MMP activation. Consistently, Rap1b-/- neutrophils exhibited increased uptake of glucose analogue (2-NBDG) and concurrent intracellular acidification, as detected by pH sensitive dye. To investigate the importance of LDHA activity during transcellular migration, Rap1b-/- neutrophils were treated with a specific pharmacological inhibitor of LDHA, namely FX11. In vitro, FX11 treatment significantly decreased transcellular migration of Rap1b-/- neutrophils. It also reduced invadosome formation of Rap1b-/- neutrophils within transwell pores, as well as neutrophil acidity and MMP activity. Furthermore, during neutrophil-endothelial cell interactions in vitro, Rap1b-/- neutrophils caused F-actin depolymerization in EC, likely facilitating transcellular passage; this was inhibited by FX11. To examine its effect in vivo, under same inflammatory microenvironment, Rap1b-/- and WT neutrophils were tagged with cell tracker dyes and transferred to recipient mice, treated with FX11 or DMSO control. Ear microvasculature was stimulated with FMLP and labeled with PECAM antibody to visualize EC junctions. Rap1b-/- neutrophils migrated out of vessels at higher frequency than WT cells, which was abrogated by FX11 treatment. Moreover, treatment with FX11 reduced the number of Rap1b-/- neutrophils located away from EC junction (transcellular route), in vivo. These results suggest enhanced local glycolytic metabolism and LDHA activity could act as critical regulators of transcellular migration. Increase in extracellular acidification mediated by LDHA activity, could affect endothelial permeability and alter neutrophil migratory behavior affecting outcome of inflammation. Since milieu acidification plays a major role in ischemic damage to the heart, these findings may be clinically important for our understanding of hyperinflammatory disorders. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document