Sphingolipids: Modulators of HIV-1 Infection and Pathogenesis

2005 ◽  
Vol 25 (5-6) ◽  
pp. 329-343 ◽  
Author(s):  
Satinder S. Rawat ◽  
Benitra T. Johnson ◽  
Anu Puri

HIV-1 infects host cells by sequential interactions of its fusion protein (gp120-gp41) with receptors CD4, CXCR4 and/or CCR5 followed by fusion of viral and host membranes. Studies indicate that additional factors such as receptor density and composition of viral and cellular lipids can dramatically modulate the fusion reaction. Lipid rafts, which primarily consist of sphingolipids and cholesterol, have been implicated for infectious route of HIV-1 entry. Plasma membrane Glycosphingolipids (GSLs) have been proposed to support HIV-1 infection in multiple ways: (a) as alternate receptor(s) for CD4-independent entry in neuronal and other cell types, (b) viral transmission, and (c) gp120-gp41-mediated membrane fusion. However, the exact mechanism(s) by which GSLs support fusion is still elusive. This article will focus on the contribution of target membrane sphingolipids and their metabolites in modulating viral entry. We will discuss the current working hypotheses underlying the mechanisms by which these lipids promote and/or block HIV-1 entry. Recent approaches in the design and development of novel glycosyl derivatives, as anti-HIV agents will be summarized.

2019 ◽  
Vol 18 (31) ◽  
pp. 2664-2680 ◽  
Author(s):  
Maninder Kaur ◽  
Ravindra K. Rawal ◽  
Goutam Rath ◽  
Amit K. Goyal

HIV-1 integrase, a member of a polynucleotidyl transferases superfamily, catalyzes the insertion of the viral DNA into the genome of host cells. It has emerged as a potential target for developing anti-HIV agents. In the last two decades, a number of integrase inhibitors have been developed as potential anti-HIV therapeutics. Several integrase inhibitors have reached later stages of clinical trials including S-1360, L870,810, L870,812 and BMS-707035. Into the bargain, Raltegravir, Elvitegravir and Dolutegravir have been approved by FDA as anti-HIV agents. This review article summarizes the structural insights required for the inhibition of the HIV1 integrase in the context of clinically relevant HIV1 integrase inhibitors. Additionally, the structural features required for overcoming HIV resistance have been discussed. These insights will update the ongoing design of novel antiviral inhibitors.


2020 ◽  
Vol 11 ◽  
Author(s):  
Dimitris G. Placantonakis ◽  
Maria Aguero-Rosenfeld ◽  
Abdallah Flaifel ◽  
John Colavito ◽  
Kenneth Inglima ◽  
...  

Neurologic manifestations of the novel coronavirus SARS-CoV-2 infection have received wide attention, but the mechanisms remain uncertain. Here, we describe computational data from public domain RNA-seq datasets and cerebrospinal fluid data from adult patients with severe COVID-19 pneumonia that suggest that SARS-CoV-2 infection of the central nervous system is unlikely. We found that the mRNAs encoding the ACE2 receptor and the TMPRSS2 transmembrane serine protease, both of which are required for viral entry into host cells, are minimally expressed in the major cell types of the brain. In addition, CSF samples from 13 adult encephalopathic COVID-19 patients diagnosed with the viral infection via nasopharyngeal swab RT-PCR did not show evidence for the virus. This particular finding is robust for two reasons. First, the RT-PCR diagnostic was validated for CSF studies using stringent criteria; and second, 61% of these patients had CSF testing within 1 week of a positive nasopharyngeal diagnostic test. We propose that neurologic sequelae of COVID-19 are not due to SARS-CoV-2 meningoencephalitis and that other etiologies are more likely mechanisms.


2017 ◽  
Vol 61 (8) ◽  
Author(s):  
David Wensel ◽  
Yongnian Sun ◽  
Zhufang Li ◽  
Sharon Zhang ◽  
Caryn Picarillo ◽  
...  

ABSTRACT A novel fibronectin-based protein (Adnectin) HIV-1 inhibitor was generated using in vitro selection. This inhibitor binds to human CD4 with a high affinity (3.9 nM) and inhibits viral entry at a step after CD4 engagement and preceding membrane fusion. The progenitor sequence of this novel inhibitor was selected from a library of trillions of Adnectin variants using mRNA display and then further optimized for improved antiviral and physical properties. The final optimized inhibitor exhibited full potency against a panel of 124 envelope (gp160) proteins spanning 11 subtypes, indicating broad-spectrum activity. Resistance profiling studies showed that this inhibitor required 30 passages (151 days) in culture to acquire sufficient resistance to result in viral titer breakthrough. Resistance mapped to the loss of multiple potential N-linked glycosylation sites in gp120, suggesting that inhibition is due to steric hindrance of CD4-binding-induced conformational changes.


2013 ◽  
Vol 41 (5) ◽  
pp. 1170-1176 ◽  
Author(s):  
Brian W. Woodrum ◽  
Jason D. Maxwell ◽  
Ashini Bolia ◽  
S. Banu Ozkan ◽  
Giovanna Ghirlanda

CVN (cyanovirin-N), a small lectin isolated from cyanobacteria, exemplifies a novel class of anti-HIV agents that act by binding to the highly glycosylated envelope protein gp120 (glycoprotein 120), resulting in inhibition of the crucial viral entry step. In the present review, we summarize recent work in our laboratory and others towards determining the crucial role of multivalency in the antiviral activity, and we discuss features that contribute to the high specificity and affinity for the glycan ligand observed in CVN. An integrated approach that encompasses structural determination, mutagenesis analysis and computational work holds particular promise to clarify aspects of the interactions between CVN and glycans.


Acta Naturae ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 68-76
Author(s):  
G. V. Kornilaeva ◽  
A. E. Siniavin ◽  
A. Schultz ◽  
A. Germann ◽  
C. Moog ◽  
...  

The anti-HIV activity of a new humic substance-derived preparation has been studied in individual pools of immune cells (CD4+ T lymphocytes, macrophages, dendritic cells). Near-complete inhibition of the HIV infection (by more than 90%) was achieved by treating each of the abovementioned cell types with non-toxic concentrations of the preparation. The inhibitory effect demonstrates the possibility of preventing the depletion of a significant portion of functionally important immune cells. A comparative study of infection inhibition in individual cell pools has allowed us to reveal the differences in the preparations effectiveness in each of the cell populations. A R5-tropic HIV-1 infection in macrophages exhibited maximum sensitivity to the preparation: 90% and 50% inhibition of the infection were observed in the presence of concentrations as low as 1.4 and 0.35 g/ml, respectively. A 15- and 19-fold higher concentration was required to achieve the same extent of inhibition in dendritic cells infected with the same strain. The effectiveness of the drug in CD4 + T lymphocytes is quite comparable to its effectiveness in macrophages. The drug is universally effective for both the T- and M-tropic variants of HIV-1.


2003 ◽  
Vol 14 (5) ◽  
pp. 271-279 ◽  
Author(s):  
Tokumi Maruyama ◽  
Shigetada Kozai ◽  
Tetsuo Yamasaki ◽  
Myriam Witvrouw ◽  
Christophe Pannecouque ◽  
...  

The development of new non-nucleoside reverse transcriptase inhibitors (NNRTIs) is an efficient strategy for finding new therapeutic agents against human immunodeficiency virus (HIV). A large number of 6-substituted uracil derivatives have been prepared in order to explore new NNRTIs. However, there are few approaches to anti-HIV agents from 1,3-disubstituted uracil derivatives. Therefore, we tried to prepare several 1,3-disubstituted uracils, which were easily obtainable from uracil by preparation under alkali and Mitsunobu conditions, and examined their antiviral activity against HIV-1 and human cytomegalovirus (HCMV). We found that 1-benzyl-3-(3,5-dimethylbenzyl)uracil and 1-cyanomethyl-3-(3,5-dimethylbenzyl)-4-thiouracil showed powerful inhibition against HCMV and HIV-1, respectively.


2000 ◽  
Vol 78 (8) ◽  
pp. 1081-1088
Author(s):  
Zhi-Xian Wang ◽  
Leonard I Wiebe ◽  
Erik De Clercq ◽  
Jan Balzarini ◽  
Edward E Knaus

A group of 4-[1-(2-deoxy-β-D-ribofuranosyl)]-derivatives of 5-fluoroaniline possessing a variety of aryl C-2 substituents (6a R = H, 6b R = F, 6c R = Me) were synthesized. Accordingly, a Heck-type coupling reaction of the 4-iodoaniline derivatives (13a–c) with the bis(tert-butyldimethylsilyl)glycal (11) in the presence of Pd(OAc)2 and Ph3As, followed by removal of the tert-butyldimethylsilyl protection groups using n-Bu4N+F-, yielded the corresponding 4-(β-D-glycero-pentofuran-3-ulos-1-yl)aniline derivatives (14a–c) having a C-3 C=O in the sugar ring. Reduction of the C-3 C=O compounds (14a–c) using NaB(OAc)3H afforded the target 4-[1-(2-deoxy-β-D-ribofuranosyl)]-derivatives of the respective 2-substituted-5-fluoroaniline (6a–c). The deoxycytidine mimic, 3-fluoro-4-[1-(2-deoxy-β-D-ribofuranosyl)]aniline (6a), in which the cytosine ring of deoxycytidine is replaced by a 4-(3-fluoroaniline) ring system, was inactive as an anticancer agent against a variety of tumor cell lines, and as an antihuman immunodeficiency virus (HIV-1, HIV-2) agent. The failure of this unnatural deoxycytidine mimic (6a) to exhibit anticancer-antiviral activity may be due to its inability to undergo phosphorylation by host cell- and virus-induced kinases.Key words: fluoroanilines, deoxycytidine mimics, anticancer-antihuman immunodeficiency virus (HIV) evaluation.


2010 ◽  
Vol 84 (21) ◽  
pp. 11235-11244 ◽  
Author(s):  
Brett D. Welch ◽  
J. Nicholas Francis ◽  
Joseph S. Redman ◽  
Suparna Paul ◽  
Matthew T. Weinstock ◽  
...  

ABSTRACT The HIV gp41 N-trimer pocket region is an ideal viral target because it is extracellular, highly conserved, and essential for viral entry. Here, we report on the design of a pocket-specific d-peptide, PIE12-trimer, that is extraordinarily elusive to resistance and characterize its inhibitory and structural properties. d-Peptides (peptides composed of d-amino acids) are promising therapeutic agents due to their insensitivity to protease degradation. PIE12-trimer was designed using structure-guided mirror-image phage display and linker optimization and is the first d-peptide HIV entry inhibitor with the breadth and potency required for clinical use. PIE12-trimer has an ultrahigh affinity for the gp41 pocket, providing it with a reserve of binding energy (resistance capacitor) that yields a dramatically improved resistance profile compared to those of other fusion inhibitors. These results demonstrate that the gp41 pocket is an ideal drug target and establish PIE12-trimer as a leading anti-HIV antiviral candidate.


1996 ◽  
Vol 7 (6) ◽  
pp. 330-337 ◽  
Author(s):  
C. McGuigan ◽  
H.-W. Tsang ◽  
N. Mahmood ◽  
A. J. Hay

Novel symmetrical nucIeotide-(5′,5′)-dimers of 3′-O-acetylthymidine, 3′-O-methylthymidine, 3′-O-ethylthymidine, 3′-O-n-propylthymidine and 3′-azido-3′-deoxythymidine (AZT) were synthesized as membrane soluble pro-drugs. These were prepared using phosphorodichloridate chemistry and were characterised by spectroscopic and analytical data. In-vitro evaluation of the derivatives in cells acutely infected with the human immunodeficiency virus (HIV-1) demonstrated a range of activities. These derivatives were generally found to display poor inhibition of HIV proliferation. Derivatives containing AZT moieties were found to be potent, but such compounds were less active than the parent nucleoside. The data indicated that the AZT-containing compounds act primarily via the release of the free nucleoside. However, in some cases, the dimers of certain inactive nucleoside analogues were found to be active. In these cases, release of the nucleoside alone cannot account for the activity.


2010 ◽  
Vol 84 (14) ◽  
pp. 6935-6942 ◽  
Author(s):  
Ruijiang Song ◽  
David Franco ◽  
Chia-Ying Kao ◽  
Faye Yu ◽  
Yaoxing Huang ◽  
...  

ABSTRACT Ibalizumab is a humanized monoclonal antibody that binds human CD4, the primary receptor for human immunodeficiency virus type 1 (HIV-1). With its unique specificity for domain 2 of CD4, this antibody potently and broadly blocks HIV-1 infection in vitro by inhibiting a postbinding step required for viral entry but without interfering with major histocompatibility complex class II (MHC-II)-mediated immune function. In clinical trials, ibalizumab has demonstrated anti-HIV-1 activity in patients without causing immunosuppression. Thus, a characterization of the ibalizumab epitope was conducted in an attempt to gain insight into the underlying mechanism of its antiviral activity as well as its safety profile. By studying mouse/human chimeric CD4 molecules and site-directed point mutants of CD4, amino acids L96, P121, P122, and Q163 in domain 2 were found to be important for ibalizumab binding, with E77 and S79 in domain 1 also contributing. All these residues appear to cluster on the interface between domains 1 and 2 of human CD4 on a surface opposite the site where gp120 and the MHC-II molecule bind on domain 1. Separately, the epitope of M-T441, a weakly neutralizing mouse monoclonal antibody that competes with ibalizumab, was localized entirely within domain 2 on residues 123 to 125 and 138 to 140. The results reported herein not only provide an appreciation for why ibalizumab has not had significant adverse immunological consequences in infected patients to date but also raise possible steric hindrance mechanisms by which this antibody blocks HIV-1 entry into a CD4-positive cell.


Sign in / Sign up

Export Citation Format

Share Document