Brain white matter abnormalities in paediatric Gaucher Type I and Type III using diffusion tensor imaging

2011 ◽  
Vol 34 (2) ◽  
pp. 549-553 ◽  
Author(s):  
Elin Haf Davies ◽  
Kiran K. Seunarine ◽  
Tina Banks ◽  
Chris A. Clark ◽  
Ashok Vellodi
2008 ◽  
Vol 23 (4) ◽  
pp. 255-273 ◽  
Author(s):  
Marinos Kyriakopoulos ◽  
Theodoros Bargiotas ◽  
Gareth J. Barker ◽  
Sophia Frangou

AbstractDiffusion tensor imaging (DTI) is a magnetic resonance imaging technique that is increasingly being used for the non-invasive evaluation of brain white matter abnormalities. In this review, we discuss the basic principles of DTI, its roots and the contribution of European centres in its development, and we review the findings from DTI studies in schizophrenia. We searched EMBASE, PubMed, PsychInfo, and Medline from February 1998 to December 2006 using as keywords ‘schizophrenia’, ‘diffusion’, ‘tensor’, and ‘DTI’. Forty studies fulfilling the inclusion criteria of this review were included and systematically reviewed. White matter abnormalities in many diverse brain regions were identified in schizophrenia. Although the findings are not completely consistent, frontal and temporal white matter seems to be more commonly affected. Limitations and future directions of this method are discussed.


2009 ◽  
Vol 21 (7) ◽  
pp. 1406-1421 ◽  
Author(s):  
Elizabeth A. Olson ◽  
Paul F. Collins ◽  
Catalina J. Hooper ◽  
Ryan Muetzel ◽  
Kelvin O. Lim ◽  
...  

Healthy participants (n = 79), ages 9–23, completed a delay discounting task assessing the extent to which the value of a monetary reward declines as the delay to its receipt increases. Diffusion tensor imaging (DTI) was used to evaluate how individual differences in delay discounting relate to variation in fractional anisotropy (FA) and mean diffusivity (MD) within whole-brain white matter using voxel-based regressions. Given that rapid prefrontal lobe development is occurring during this age range and that functional imaging studies have implicated the prefrontal cortex in discounting behavior, we hypothesized that differences in FA and MD would be associated with alterations in the discounting rate. The analyses revealed a number of clusters where less impulsive performance on the delay discounting task was associated with higher FA and lower MD. The clusters were located primarily in bilateral frontal and temporal lobes and were localized within white matter tracts, including portions of the inferior and superior longitudinal fasciculi, anterior thalamic radiation, uncinate fasciculus, inferior fronto-occipital fasciculus, corticospinal tract, and splenium of the corpus callosum. FA increased and MD decreased with age in the majority of these regions. Some, but not all, of the discounting/DTI associations remained significant after controlling for age. Findings are discussed in terms of both developmental and age-independent effects of white matter organization on discounting behavior.


Author(s):  
Bin Chen ◽  
John Moreland

Magnetic resonance diffusion tensor imaging (DTI) is sensitive to the anisotropic diffusion of water exerted by its macromolecular environment and has been shown useful in characterizing structures of ordered tissues such as the brain white matter, myocardium, and cartilage. The water diffusivity inside of biological tissues is characterized by the diffusion tensor, a rank-2 symmetrical 3×3 matrix, which consists of six independent variables. The diffusion tensor contains much information of diffusion anisotropy. However, it is difficult to perceive the characteristics of diffusion tensors by looking at the tensor elements even with the aid of traditional three dimensional visualization techniques. There is a need to fully explore the important characteristics of diffusion tensors in a straightforward and quantitative way. In this study, a virtual reality (VR) based MR DTI visualization with high resolution anatomical image segmentation and registration, ROI definition and neuronal white matter fiber tractography visualization and fMRI activation map integration is proposed. The VR application will utilize brain image visualization techniques including surface, volume, streamline and streamtube rendering, and use head tracking and wand for navigation and interaction, the application will allow the user to switch between different modalities and visualization techniques, as well making point and choose queries. The main purpose of the application is for basic research and clinical applications with quantitative and accurate measurements to depict the diffusivity or the degree of anisotropy derived from the diffusion tensor.


2020 ◽  
Vol 44 (3) ◽  
pp. 393-398 ◽  
Author(s):  
Ahmed Abdel Khalek Abdel Razek ◽  
Saher Ebrahiem Taman ◽  
Mohamed Ezz El Regal ◽  
Ahmed Megahed ◽  
Sherine Elzeny ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document