scholarly journals Characterization of mechanical properties of jute/PLA composites containing nano SiO2 modified by coupling agents

Cellulose ◽  
2021 ◽  
Author(s):  
Xueyang Song ◽  
Cuicui Fang ◽  
Yuanyuan Li ◽  
Ping Wang ◽  
Yan Zhang ◽  
...  
Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1172 ◽  
Author(s):  
Rongfei Zhang ◽  
Xiangyou Wang ◽  
Meng Cheng

The various sizes (15, 30, 80, and 100 nm) of nano-SiO2/potato starch films were synthesized and characterized. The gas permeability, antibacterial properties, and mechanical properties of the films were evaluated to their potential for application as food packaging materials. Results indicated that the 100 nm nano-SiO2 was well dispersed in the starch matrix, which induced an active group on the surface of 100 nm nano-SiO2 adequately combined with starch macromolecule. The water resistance and mechanical properties of the films were improved with the addition of nano-SiO2. Notably, resistance to ultraviolet and thermal aging was also enhanced. The nano-SiO2/potato starch films were more efficient against Escherichia coli (E. coli) than Staphylococcus aureus (S. aureus). Remarkable preservation properties of the films packaging the white mushrooms were obtained, with those of the 100 nm films considered superior. This study can significantly guide the rational choice of the nano-SiO2 size to meet the packaging requirements of various agricultural products.


2021 ◽  
Author(s):  
Xueyang Song ◽  
Cuicui Fang ◽  
Yuanyuan Li ◽  
Yan Zhang ◽  
Ping Wang

Abstract Although fibers-reinforced PLA composites show strong application prospects, their low mechanical properties limit their applications to some extent. In this paper, nano-SiO2 particles as well as modified nano SiO2 by coupling agents which can efficiently improve the strength and toughness of composite materials are introduced into the PLA matrix. The bending, stretching and thermal properties of designed jute/PLA nonwoven composites were studied. The study shows that the nano-SiO2 particles are beneficial for the interface performance between the PLA matrix and jute leading to improvement in the mechanical property and thermal stability. Moreover, thermomechanical properties indicate that the addition of SiO2 can improve the jute/PLA interfacial adhesion and increase the glass transition temperature of the material. Finally, toughening mechanism of nano-SiO2 particles in the jute/PLA composite was analyzed.


2021 ◽  
Author(s):  
Xueyang Song ◽  
Cuicui Fang ◽  
Yuanyuan Li ◽  
Ping Wang ◽  
Yan Zhang

Abstract Although jute fibers-reinforced PLA composites shows strong application prospects, their low mechanical properties limit their applications to some extent. In this paper, nano-SiO2 particles as well as modified nano SiO2 by coupling agents which can efficiently improve the strength and toughness of composite materials are introduced into the PLA matrix. The bending, stretching and thermal properties of designed jute/PLA nonwoven composites were studied. The study shows that the nano-SiO2 particles are beneficial to the interface performance between the PLA matrix and jute leading to improvement in the mechanical property and thermal stability. Moreover, thermomechanical properties indicate that the addition of SiO2 can improve the jute/PLA interfacial adhesion and increase the glass transition temperature of the material. Finally, toughening mechanism of nano-SiO2 particles in the jute/PLA composite was analyzed.


Author(s):  
Gyeung Ho Kim ◽  
Mehmet Sarikaya ◽  
D. L. Milius ◽  
I. A. Aksay

Cermets are designed to optimize the mechanical properties of ceramics (hard and strong component) and metals (ductile and tough component) into one system. However, the processing of such systems is a problem in obtaining fully dense composite without deleterious reaction products. In the lightweight (2.65 g/cc) B4C-Al cermet, many of the processing problems have been circumvented. It is now possible to process fully dense B4C-Al cermet with tailored microstructures and achieve unique combination of mechanical properties (fracture strength of over 600 MPa and fracture toughness of 12 MPa-m1/2). In this paper, microstructure and fractography of B4C-Al cermets, tested under dynamic and static loading conditions, are described.The cermet is prepared by infiltration of Al at 1150°C into partially sintered B4C compact under vacuum to full density. Fracture surface replicas were prepared by using cellulose acetate and thin-film carbon deposition. Samples were observed with a Philips 3000 at 100 kV.


Author(s):  
K.L. More ◽  
R.A. Lowden

The mechanical properties of fiber-reinforced composites are directly related to the nature of the fiber-matrix bond. Fracture toughness is improved when debonding, crack deflection, and fiber pull-out occur which in turn depend on a weak interfacial bond. The interfacial characteristics of fiber-reinforced ceramics can be altered by applying thin coatings to the fibers prior to composite fabrication. In a previous study, Lowden and co-workers coated Nicalon fibers (Nippon Carbon Company) with silicon and carbon prior to chemical vapor infiltration with SiC and determined the influence of interfacial frictional stress on fracture phenomena. They found that the silicon-coated Nicalon fiber-reinforced SiC had low flexure strengths and brittle fracture whereas the composites containing carbon coated fibers exhibited improved strength and fracture toughness. In this study, coatings of boron or BN were applied to Nicalon fibers via chemical vapor deposition (CVD) and the fibers were subsequently incorporated in a SiC matrix. The fiber-matrix interfaces were characterized using transmission and scanning electron microscopy (TEM and SEM). Mechanical properties were determined and compared to those obtained for uncoated Nicalon fiber-reinforced SiC.


Author(s):  
Thais Helena Sydenstricker Flores-Sahagun ◽  
Kelly Priscila Agapito ◽  
ROSA MARIA JIMENEZ AMEZCUA ◽  
Felipe Jedyn

Author(s):  
Nicholas Randall ◽  
Rahul Premachandran Nair

Abstract With the growing complexity of integrated circuits (IC) comes the issue of quality control during the manufacturing process. In order to avoid late realization of design flaws which could be very expensive, the characterization of the mechanical properties of the IC components needs to be carried out in a more efficient and standardized manner. The effects of changes in the manufacturing process and materials used on the functioning and reliability of the final device also need to be addressed. Initial work on accurately determining several key mechanical properties of bonding pads, solder bumps and coatings using a combination of different methods and equipment has been summarized.


Sign in / Sign up

Export Citation Format

Share Document