scholarly journals Loss of SORCS2 is Associated with Neuronal DNA Double-Strand Breaks

Author(s):  
Katerina O. Gospodinova ◽  
Ditte Olsen ◽  
Mathias Kaas ◽  
Susan M. Anderson ◽  
Jonathan Phillips ◽  
...  

AbstractSORCS2 is one of five proteins that constitute the Vps10p-domain receptor family. Members of this family play important roles in cellular processes linked to neuronal survival, differentiation and function. Genetic and functional studies implicate SORCS2 in cognitive function, as well as in neurodegenerative and psychiatric disorders. DNA damage and DNA repair deficits are linked to ageing and neurodegeneration, and transient neuronal DNA double-strand breaks (DSBs) also occur as a result of neuronal activity. Here, we report a novel role for SORCS2 in DSB formation. We show that SorCS2 loss is associated with elevated DSB levels in the mouse dentate gyrus and that knocking out SORCS2 in a human neuronal cell line increased Topoisomerase IIβ-dependent DSB formation and reduced neuronal viability. Neuronal stimulation had no impact on levels of DNA breaks in vitro, suggesting that the observed differences may not be the result of aberrant neuronal activity in these cells. Our findings are consistent with studies linking the VPS10 receptors and DNA damage to neurodegenerative conditions.

2021 ◽  
Author(s):  
Katerina O. Gospodinova ◽  
Ditte Olsen ◽  
Mathias Kaas ◽  
Susan M. Anderson ◽  
Jonathan Phillips ◽  
...  

AbstractSORCS2 is one of five proteins that constitute the Vps10p-domain receptor family. Members of this family play important roles in cellular processes linked to neuronal survival, differentiation and function. Genetic and functional studies implicate SORCS2 in cognitive function, as well as in neurodegenerative and psychiatric disorders. DNA damage and DNA repair deficits are linked to ageing and neurodegeneration, and transient neuronal DNA double-strand breaks (DSBs) also occur as a result of neuronal activity. Here, we report a novel role for SORCS2 in DSB formation. We show that SorCS2 loss is associated with elevated DSB levels in the mouse dentate gyrus and that knocking out SORCS2 in a human neuronal cell line increased Topoisomerase IIβ-dependent DSB formation and reduced neuronal viability. Neuronal stimulation had no impact on levels of DNA damage, suggesting that the observed differences are unlikely to be the result of aberrant neuronal activity. Our findings are consistent with studies linking the VPS10 receptors and DNA damage to neurodegenerative conditions.


Author(s):  
Xinrui Zhang ◽  
Mariana Bobeica ◽  
Michael Unger ◽  
Anastasia Bednarz ◽  
Bjoern Gerold ◽  
...  

Abstract Purpose High-intensity focused ultrasound (HIFU/FUS) has expanded as a noninvasive quantifiable option for hyperthermia (HT). HT in a temperature range of 40–47 °C (thermal dose CEM43 ≥ 25) could work as a sensitizer to radiation therapy (RT). Here, we attempted to understand the tumor radiosensitization effect at the cellular level after a combination treatment of FUS+RT. Methods An in vitro FUS system was developed to induce HT at frequencies of 1.147 and 1.467 MHz. Human head and neck cancer (FaDU), glioblastoma (T98G), and prostate cancer (PC-3) cells were exposed to FUS in ultrasound-penetrable 96-well plates followed by single-dose X‑ray irradiation (10 Gy). Radiosensitizing effects of FUS were investigated by cell metabolic activity (WST‑1 assay), apoptosis (annexin V assay, sub-G1 assay), cell cycle phases (propidium iodide staining), and DNA double-strand breaks (γH2A.X assay). Results The FUS intensities of 213 (1.147 MHz) and 225 W/cm2 (1.467 MHz) induced HT for 30 min at mean temperatures of 45.20 ± 2.29 °C (CEM43 = 436 ± 88) and 45.59 ± 1.65 °C (CEM43 = 447 ± 79), respectively. FUS improves the effect of RT significantly by reducing metabolic activity in T98G cells 48 h (RT: 96.47 ± 8.29%; FUS+RT: 79.38 ± 14.93%; p = 0.012) and in PC-3 cells 72 h (54.20 ± 10.85%; 41.01 ± 11.17%; p = 0.016) after therapy, but not in FaDu cells. Mechanistically, FUS+RT leads to increased apoptosis and enhancement of DNA double-strand breaks compared to RT alone in T98G and PC-3 cells. Conclusion Our in vitro findings demonstrate that FUS has good potential to sensitize glioblastoma and prostate cancer cells to RT by mainly enhancing DNA damage.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Haohan Zhuang ◽  
Chaoqun Yao ◽  
Xianfeng Zhao ◽  
Xueqiu Chen ◽  
Yimin Yang ◽  
...  

Abstract Background Toxoplasma gondii is an obligate parasite of all warm-blooded animals around the globe. Once infecting a cell, it manipulates the host’s DNA damage response that is yet to be elucidated. The objectives of the present study were three-fold: (i) to assess DNA damages in T. gondii-infected cells in vitro; (ii) to ascertain causes of DNA damage in T. gondii-infected cells; and (iii) to investigate activation of DNA damage responses during T. gondii infection. Methods HeLa, Vero and HEK293 cells were infected with T. gondii at a multiplicity of infection (MOI) of 10:1. Infected cells were analyzed for a biomarker of DNA double-strand breaks (DSBs) γH2AX at 10 h, 20 h or 30 h post-infection using both western blot and immunofluorescence assay. Reactive oxygen species (ROS) levels were measured using 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA), and ROS-induced DNA damage was inhibited by a ROS inhibitor N-acetylcysteine (NAC). Lastly, DNA damage responses were evaluated by detecting the active form of ataxia telangiectasia mutated/checkpoint kinase 2 (ATM/CHK2) by western blot. Results γH2AX levels in the infected HeLa cells were significantly increased over time during T. gondii infection compared to uninfected cells. NAC treatment greatly reduced ROS and concomitantly diminished γH2AX in host cells. The phosphorylated ATM/CHK2 were elevated in T. gondii-infected cells. Conclusions Toxoplasma gondii infection triggered DNA DSBs with ROS as a major player in host cells in vitro. It also activated DNA damage response pathway ATM/CHK2. Toxoplasma gondii manages to keep a balance between survival and apoptosis of its host cells for the benefit of its own survival.


Blood ◽  
2007 ◽  
Vol 110 (2) ◽  
pp. 709-718 ◽  
Author(s):  
Tanyel Kiziltepe ◽  
Teru Hideshima ◽  
Kenji Ishitsuka ◽  
Enrique M. Ocio ◽  
Noopur Raje ◽  
...  

Abstract Here we investigated the cytotoxicity of JS-K, a prodrug designed to release nitric oxide (NO•) following reaction with glutathione S-transferases, in multiple myeloma (MM). JS-K showed significant cytotoxicity in both conventional therapy-sensitive and -resistant MM cell lines, as well as patient-derived MM cells. JS-K induced apoptosis in MM cells, which was associated with PARP, caspase-8, and caspase-9 cleavage; increased Fas/CD95 expression; Mcl-1 cleavage; and Bcl-2 phosphorylation, as well as cytochrome c, apoptosis-inducing factor (AIF), and endonuclease G (EndoG) release. Moreover, JS-K overcame the survival advantages conferred by interleukin-6 (IL-6) and insulin-like growth factor 1 (IGF-1), or by adherence of MM cells to bone marrow stromal cells. Mechanistic studies revealed that JS-K–induced cytotoxicity was mediated via NO• in MM cells. Furthermore, JS-K induced DNA double-strand breaks (DSBs) and activated DNA damage responses, as evidenced by neutral comet assay, as well as H2AX, Chk2 and p53 phosphorylation. JS-K also activated c-Jun NH2-terminal kinase (JNK) in MM cells; conversely, inhibition of JNK markedly decreased JS-K–induced cytotoxicity. Importantly, bortezomib significantly enhanced JS-K–induced cytotoxicity. Finally, JS-K is well tolerated, inhibits tumor growth, and prolongs survival in a human MM xenograft mouse model. Taken together, these data provide the preclinical rationale for the clinical evaluation of JS-K to improve patient outcome in MM.


2018 ◽  
Vol 177 ◽  
pp. 06001
Author(s):  
R.A. Kozhina ◽  
V.N. Chausov ◽  
E.A. Kuzmina ◽  
A.V. Boreyko

One of the central problems of modern radiobiology is the study of DNA damage induction and repair mechanisms in central nervous system cells, in particular, in hippocampal cells. The study of the regularities of molecular damage formation and repair in the hippocampus cells is of special interest, because these cells, unlike most cells of the central nervous system (CNS), keep proliferative activity, i.e. ability to neurogenesis. Age-related changes in hippocampus play an important role, which could lead to radiosensitivity changes in neurons to the ionizing radiation exposure. Regularities in DNA double-strand breaks (DSB) induction and repair in different aged mice hippocampal cells in vivo and in vitro under the action of γ-rays 60Со were studied with DNA comet-assay. The obtained dose dependences of DNA DSB induction are linear both in vivo and in vitro. It is established that in young animals' cells, the degree of DNA damage is higher than in older animals. It is shown that repair kinetics is basically different for exposure in vivo and in vitro.


2020 ◽  
Author(s):  
Haohan Zhuang ◽  
Chaoqun Yao ◽  
Xianfeng Zhao ◽  
Yi Yang ◽  
Xueqiu Chen ◽  
...  

Abstract Background: Toxoplasma gondii (T. gondii) is an obligate parasite of the warm-blooded animals with a worldwide distribution. Once having entered a host cell, it manipulates host’s DNA damage response that is yet to be investigated. The objectives of the present study were three-fold: 1) to assess DNA damages in T. gondii-infected cells in vitro; 2) to ascertain sources causing DNA damage in T. gondii-infected cells; 3) to investigate activation of DNA damage response during T. gondii infection.Methods: HeLa, Vero and HEK293 cells were infected with T. gondii at multiplicity of infection (MOI) of 10:1. Infected cells at 10 h, 20 h or 30 h post infection were analyzed for a DNA double strand breaks (DSBs) biomarker γH2AX using Western blot and immunofluorescence assay. Reactive oxygen species (ROS) levels were examined using 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA), and the impact of ROS on DNA damage was assessed by inhibition using a ROS inhibitor N-acetylcysteine (NAC). Lastly, DNA damage response in these T. gondii-infected cells was evaluated by detecting the expression of active form of ataxia telangiectasia mutated/checkpoint kinase 2 (ATM/CHK2) with Western blot. Results: Compared to uninfected cells, γH2AX expression in the infected HeLa cells at 10 h, 20 h, and 30 h was increased over time during T. gondii infection. NAC treatment reduced ROS level in host cells and significantly decreased the expression of γH2AX. Expression of phosphorylated ATM/CHK2 was elevated in T. gondii-infected cells.Conclusion: T. gondii infection triggered DNA DSBs with ROS as a major player in host cells in vitro. It also concomitantly activated DNA damage response pathway ATM/CHK2. T. gondii struggles a balance between survival and apoptosis of its host cells for the benefit of its own survival.


2021 ◽  
Author(s):  
David Yves Zander ◽  
Sandy S Burkart ◽  
Sandra Wuest ◽  
Vladimir Goncalves Magalhaes ◽  
Marco Binder

Properly responding to DNA damage is vital for eukaryotic cells, including the induction of DNA repair, growth arrest and, as a last resort to prevent neoplastic transformation, cell death. Besides being crucial for ensuring homeostasis, the same pathways and mechanisms are at the basis of chemoradiotherapy in cancer treatment, which involves therapeutic induction of DNA damage by chemical or physical (radiological) measures. Apart from typical DNA damage response mediators, the relevance of cell-intrinsic antiviral signaling pathways in response to DNA breaks has recently emerged. Originally known for combatting viruses via expression of antiviral factors including interferons (IFNs) and establishing of an antiviral state, retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) were found to be critical for adequate induction of cell death upon the introduction of DNA double-strand breaks. We here show that presence of IRF3 is crucial in this process, most likely through direct activation of pro-apoptotic factors rather than transcriptional induction of canonical downstream components, such as IFNs. Investigating genes reported to be involved in both DNA damage response and antiviral signaling, we demonstrate that IRF1 is an obligatory factor for DNA damage-induced cell death. Interestingly, its regulation does not require activation of RLR signaling, but rather sensing of DNA double strand breaks by ATM and ATR. Hence, even though independently regulated, both RLR signaling and IRF1 are essential for proper induction/execution of intrinsic apoptosis. Our results not only support more broadly developing IRF1 as a biomarker predictive for the effectiveness of chemoradiotherapy, but also suggest investigating a combined pharmacological stimulation of RLR and IRF1 signaling as a potential adjuvant regimen in tumor therapy.


2010 ◽  
Vol 49 (S 01) ◽  
pp. S64-S68
Author(s):  
E. Dikomey

SummaryIonising irradiation acts primarily via induction of DNA damage, among which doublestrand breaks are the most important lesions. These lesions may lead to lethal chromosome aberrations, which are the main reason for cell inactivation. Double-strand breaks can be repaired by several different mechanisms. The regulation of these mechanisms appears be fairly different for normal and tumour cells. Among different cell lines capacity of doublestrand break repair varies by only few percents and is known to be determined mostly by genetic factors. Knowledge about doublestrand break repair mechanisms and their regulation is important for the optimal application of ionising irradiation in medicine.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Deepti Sharma ◽  
Louis De Falco ◽  
Sivaraman Padavattan ◽  
Chang Rao ◽  
Susana Geifman-Shochat ◽  
...  

AbstractThe poly(ADP-ribose) polymerase, PARP1, plays a key role in maintaining genomic integrity by detecting DNA damage and mediating repair. γH2A.X is the primary histone marker for DNA double-strand breaks and PARP1 localizes to H2A.X-enriched chromatin damage sites, but the basis for this association is not clear. We characterize the kinetics of PARP1 binding to a variety of nucleosomes harbouring DNA double-strand breaks, which reveal that PARP1 associates faster with (γ)H2A.X- versus H2A-nucleosomes, resulting in a higher affinity for the former, which is maximal for γH2A.X-nucleosome that is also the activator eliciting the greatest poly-ADP-ribosylation catalytic efficiency. The enhanced activities with γH2A.X-nucleosome coincide with increased accessibility of the DNA termini resulting from the H2A.X-Ser139 phosphorylation. Indeed, H2A- and (γ)H2A.X-nucleosomes have distinct stability characteristics, which are rationalized by mutational analysis and (γ)H2A.X-nucleosome core crystal structures. This suggests that the γH2A.X epigenetic marker directly facilitates DNA repair by stabilizing PARP1 association and promoting catalysis.


Author(s):  
Sang-Min Jang ◽  
Christophe E. Redon ◽  
Haiqing Fu ◽  
Fred E. Indig ◽  
Mirit I. Aladjem

Abstract Background The p97/valosin-containing protein (VCP) complex is a crucial factor for the segregation of ubiquitinated proteins in the DNA damage response and repair pathway. Objective We investigated whether blocking the p97/VCP function can inhibit the proliferation of RepID-deficient cancer cells using immunofluorescence, clonogenic survival assay, fluorescence-activated cell sorting, and immunoblotting. Result p97/VCP was recruited to chromatin and colocalized with DNA double-strand breaks in RepID-deficient cancer cells that undergo spontaneous DNA damage. Inhibition of p97/VCP induced death of RepID-depleted cancer cells. This study highlights the potential of targeting p97/VCP complex as an anticancer therapeutic approach. Conclusion Our results show that RepID is required to prevent excessive DNA damage at the endogenous levels. Localization of p97/VCP to DSB sites was induced based on spontaneous DNA damage in RepID-depleted cancer cells. Anticancer drugs targeting p97/VCP may be highly potent in RepID-deficient cells. Therefore, we suggest that p97/VCP inhibitors synergize with RepID depletion to kill cancer cells.


Sign in / Sign up

Export Citation Format

Share Document